5,601 research outputs found

    Innovative 3-D Printing Processing Techniques for Flexible and Wearable Planar Rectennas

    Get PDF
    This work demonstrates the use of a low-cost, lossy, flexible substrate processed by novel 3-D printing techniques which significantly mitigate its intrinsic losses, thus providing performance comparable to those of traditional substrates. These processing techniques are applied to both microstrip and coplanar waveguide structures; they are first derived theoretically, starting from the electromagnetic theory of modes propagation, then numerically validated by full-wave analysis, and finally experimentally verified. The design of a miniaturized 868 MHz rectenna, adopting a coplanar-fed patch antenna based on the proposed fabrication approach, is presented. By means of nonlinear/electromagnetic co-design, the antenna is directly matched to the rectifier. A 30-dB power range starting from -20 dBm is considered. Direct matching allows to get rid of a dedicated matching network and its associated losses, resulting in a slight efficiency increase and a significant reduction of the overall dimensions. Finally, the 3-Dprinted prototype is presented: the overall rectenna performance proves that design freedom enabled by 3-D printing paves the way to the use of low-cost flexible dielectric materials, even with poor electromagnetic properties, to realize wearable battery-free wireless nodes

    Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock

    Get PDF
    The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results

    Modulation of en-route charges to redistribute traffic in the European airspace

    Get PDF
    Peak-load pricing (PLP), a two-tariffs charging scheme commonly used in public transport and utilities, is tested on the European Air Traffic Management (ATM) system as a means for reducing capacity-demand imbalances. In particular, a centralised approach to PLP (CPLP) where a Central Planner (CP) sets en-route charges on the network is presented. CPLP consists of two phases: in the first, congested airspace sectors and their peak and off-peak hours are identified; in the second, CP assesses and sets en-route charges in order to reduce overall shift on the network. Such charges should guarantee that Air Navigation Service Providers (ANSPs) are able to recover their operational costs while inducing the Airspace Users (AUs) to route their flights in a way that respects airspace capacity. The interaction between CP and AUs is modelled as a Stackelberg game and formulated by means of bilevel linear programming. Two heuristic approaches, based on Coordinate-wise Descent and Genetic Algorithms are implemented to solve the CPLP model on a data set obtained from historical data for an entire day of traffic on European airspace. Results show that significant improvements in traffic distribution in terms of shift and sector load can be achieved through this simple en-route charges modulation scheme

    Radar array diagnosis from undersampled data using a compressed sensing/sparse recovery technique

    Get PDF
    A Compressed Sensing/Sparse Recovery approach is adopted in this paper for the accurate diagnosis of fault array elements from undersampled data. Experimental validations on a slotted waveguide test array are discussed to demonstrate the effectiveness of the proposed procedure in the failures retrieval from a small set of measurements with respect to the number of radiating elements. Due to the sparsity feature of the proposed formulation, the method is particularly appealing for the diagnostics of large arrays, typically adopted for radar applications

    Microwave Devices for Wearable Sensors and IoT

    Get PDF
    The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor

    Beyond the fundamental noise limit in coherent optical fiber links

    Get PDF
    It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47 km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well

    COVID-19: Considerations about immune suppression and biologicals at the time of SARS-CoV-2 pandemic

    Get PDF
    The extent of the profound immunological and nonimmunological responses linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being investigated worldwide due to the large burden associated with death due to SARS-CoV-2 and the short-term consequences of coronavirus disease 2019 (COVID-19). It has been hypothesized that patients on immunosuppressive treatments, including biologics, may have an augmented risk of being infected by SARS-CoV-2; however, there are currently no definitive data about biological drugs and COVID-19 in immune-mediated inflammatory diseases. Current epidemiological models developed to understand how long the COVID-19 epidemic may last are not conclusive and range from sustained epidemics to complete elimination. Nevertheless, even in the best-case scenario of apparent elimination, there is concordance about a possible contagion resurgence as late as 2024. Therefore, knowledge of the impact of SARS-CoV-2 on immune-mediated diseases and among patients treated with biologicals, together with the results of novel and promising COVID-19 treatment strategies targeting the virus and the host immune response (or both), will help us to best manage our patients during this pandemic over the next few years

    An all-in-one dual band blade antenna for ads-b and 5g communications in uav assisted wireless networks

    Get PDF
    This paper is aimed at the characterization and manufacturing of an SMA coaxial fed com-pact blade antenna with dual frequency characteristics for broadband applications on board of Unmanned Air Vehicles (UAVs). This antenna is linearly polarized, and it combines the benefits of Automatic Dependent Surveillance-Broadcast (ADS-B) and 5th Generation (5G) communications in one single element, covering both the 1.030–1.090 GHz and the 3.4–3.8 GHz bands thanks to a bent side and a ‘C’ shaped slot within the radiation element. Starting from the simulation outcomes on an ideal ground plane, the results are here extended to a bent ground plane and on two UAV com-mercial CAD models. Details of manufacturing of the antenna in both aluminium and FR-4 substrate materials are presented. The comparison between measurements and simulations is discussed in terms of return loss, bandwidth, gain, and radiation pattern. Results show an antenna with a low profile and a simple structure that can be employed in various wideband communication systems, suiting future UAV assisted 5G networks while being perfectly compliant with forthcoming ADS-B based Detect-And-Avoid (DAA) technologies in Unmanned Aerial Traffic Management (UTM)

    A device to characterize optical fibres

    Get PDF
    ATLAS is a general purpose experiment approved for the LHC collider at CERN. An important component of the detector is the central hadronic calorimeter; for its construction more than 600,000 Wave Length Shifting (WLS) fibres (corresponding to a total length of 1,120 Km) have been used. We have built and put into operation a dedicated instrument for the measurement of light yield and attenuation length over groups of 20 fibres at a time. The overall accuracy achieved in the measurement of light yield (attenuation length) is 1.5% (3%). We also report the results obtained using this method in the quality control of a large sample of fibres.Comment: 17 pages 20 figeres submitted to NIM journa

    Multimodal, open-source big data analysis in asthma: A novel approach to inform public health programming

    Get PDF
    Asthma is a chronic respiratory disease affecting over 358 million people worldwide; for this reason analysing big data on asthma from different countries could give a more detailed picture of current disease burden. We aim to investigate the correlations between asthma and key socio-demographic parameters from different world databases. We found a direct correlation with the gross domestic product (GDP) per capita and its nominal counterpart, with wealthiest countries seen to have the highest prevalence of asthma, as also confirmed by a similar correlation with the human development index (HDI). A positive correlation was also seen between asthma prevalence and a number of socio-cultural data being representative of a good life quality index and prevalent in more developed and wealthier countries. Concerning medical data, an inverse relationship was seen between asthma prevalence and helminthiasis. Those data indicate a higher prevalence for asthma in more developed countries, where socio-economic status is higher and also the access to medical care is more ubiquitous. The approach used in our study highlighted the role of medical literacy and access to healthcare facilities in the correct diagnosis of asthma and vice versa. Our data appear to be suitable in terms of a health programming approach because of the high burden of disease worldwide
    • …
    corecore