18 research outputs found

    Distribuzione e abbondanza della stigofauna nell\'habitat ipogeo di natura fratturato,nella zona di Nardò (Puglia)

    Get PDF
    ItLa falda sotterranea nei pressi di Nardò (LE)è stata costantemente monitorata dal CNR-IRSA di Bari a partire dal 1997 e,dal 2001 sono state effettuate le ricerche dei parametri microbiologici di contaminazione fecale.Il Laboratorio Ipogeo Salentino di Biospeleologia “Sandro Ruffo ”ha campionato la fauna sotterranea nelle stesse aree esaminando tre categorie ecologiche:stigosseni,stigo fili e stigobionti. Gli autori hanno voluto veri ficare la sensibilità della stigofauna alle variazioni delle qualità ambientali dell’habitat ipogeo quali cambi di temperatura dell’acqua,di salinità,pH o composizione chimica,tenuto conto che questi organismi partecipano attivamente ai processi degradativi.Dalla ricerca emerge che il misidaceo Spelaeomysis bottazzii non può essere utilizzato come indicatore biologico in quanto è stato ritrovato sia in siti contaminati che in zone non contaminate.EnThe ground water quality at the Nardò (LE)site has been continuously monitored by CNR-IRSA since 1997,and after 2001 also by considering pathogenic indicators due to fecal ground water pollution.In the same area,the Laboratorio Ipogeo Salentino di Biospeleologia “Sandro Ruffo ” sampled the underground fauna and three ecological categories were examined:stygoxenes,stygophiles and stygobi- onts.The authors aimed to check the stygofauna sensitivity to hypogeous habitat changes due to environmental stresses such as water temperature,water salinity, pH or chemical constituents,though they are active organisms which contribute to the biodegradation.Here the possible relationship between sampled aquatic organ- isms and ground water pollution has been focused.The results showed that Spe- laeomysis bottazzii cannot be useful as biological indicator,because the species lives in both contaminated and non-contaminated ground waters

    A New Method to Infer Advancement of Saline Front in Coastal Groundwater Systems by 3D: The Case of Bari (Southern Italy) Fractured Aquifer

    No full text
    A new method to study 3D saline front advancement in coastal fractured aquifers has been presented. Field groundwater salinity was measured in boreholes of the Bari (Southern Italy) coastal aquifer with depth below water table. Then, the Ghyben-Herzberg freshwater/saltwater (50%) sharp interface and saline front position were determined by model simulations of the freshwater flow in groundwater. Afterward, the best-fit procedure between groundwater salinity measurements, at assigned water depth of 1.0 m in boreholes, and distances of each borehole from the modelled freshwater/saltwater saline front was used to convert each position (x, y) in groundwater to the water salinity concentration at depth of 1.0 m. Moreover, a second best-fit procedure was applied to the salinity measurements in boreholes with depth z. These results provided a grid file (x, y, z, salinity) suitable for plotting the actual Bari aquifer salinity by 3D maps. Subsequently, in order to assess effects of pumping on the saltwater-freshwater transition zone in the coastal aquifer, the Navier-Stokes (N-S) equations were applied to study transient density-driven flow and salt mass transport into freshwater of a single fracture. The rate of seawater/freshwater interface advancement given by the N-S solution was used to define the progression of saline front in Bari groundwater, starting from the actual salinity 3D map. The impact of pumping of 335 L·s−1 during the transition period of 112.8 days was easily highlighted on 3D salinity maps of Bari aquifer

    Modeling Stygofauna Resilience to the Impact of the Climate Change in the Karstic Groundwaters of South Italy

    No full text
    We predicted the global warming effects on the stygofauna of Murgia–Salento karstic groundwaters in Italy for 2050, which contribute to a biodiversity loss assessment in the climate change context. For quantitative impact estimations, we defined a local resilience score (LRS) for sampled species between 2018 and 2021. A resilience model equation of the stygobiont species conservation was obtained from a surface best-fit of the assigned LRS and the corresponding values of independent variables describing the environmental quality of monitored habitats and LRS. The principal components of the correlation between the monitored variables and LRS were obtained via factor analysis. Three-dimensional surface maps of stygofauna species resilience (SSR) were constructed to visualize and quantitatively compare the biodiversity loss of species assemblages owing to environmental and habitat quality modifications. The proposed SSR model was applied to the sampled stygofauna, and the decrease in local species resilience for 2050 was predicted. Independent variable factors were updated for 2050 to consider increases of up to 2 °C and 0.04 mS/cm in groundwater temperature and electric conductance observed for 2021. The SSR model results predicted a high impact on the resilience of Parastenocaris cf. orcina (80%), newly retrieved Crustacea Copepod Cyclopidae gen 1 sp 1, and three other stygobites (~50%). The resilience of Metacyclops stammeri had minor impacts

    Modeling Stygofauna Resilience to the Impact of the Climate Change in the Karstic Groundwaters of South Italy

    No full text
    We predicted the global warming effects on the stygofauna of Murgia–Salento karstic groundwaters in Italy for 2050, which contribute to a biodiversity loss assessment in the climate change context. For quantitative impact estimations, we defined a local resilience score (LRS) for sampled species between 2018 and 2021. A resilience model equation of the stygobiont species conservation was obtained from a surface best-fit of the assigned LRS and the corresponding values of independent variables describing the environmental quality of monitored habitats and LRS. The principal components of the correlation between the monitored variables and LRS were obtained via factor analysis. Three-dimensional surface maps of stygofauna species resilience (SSR) were constructed to visualize and quantitatively compare the biodiversity loss of species assemblages owing to environmental and habitat quality modifications. The proposed SSR model was applied to the sampled stygofauna, and the decrease in local species resilience for 2050 was predicted. Independent variable factors were updated for 2050 to consider increases of up to 2 °C and 0.04 mS/cm in groundwater temperature and electric conductance observed for 2021. The SSR model results predicted a high impact on the resilience of Parastenocaris cf. orcina (80%), newly retrieved Crustacea Copepod Cyclopidae gen 1 sp 1, and three other stygobites (~50%). The resilience of Metacyclops stammeri had minor impacts

    Tectonic control on groundwater flow in a karst polje of southern Italy

    No full text
    In the last decades, climate changes are affecting the freshwater resources quality and quantity around the globe, reducing their availability. On Earth, glaciers and ice cap occupy 68,7%, but they are not easily usable for human purposes; groundwater stands for 30,1%, while surface waters represent the remaining 1,2%. Therefore, groundwater resource is by far the most important natural tank to be preserved. In karst, scientists are still working on developing new methods to understand the true groundwater hydrological behavior, due to subsoil anisotropy in both space and time. This requires a deep knowledge about discontinuity systems in the carbonates, and to improve our comprehension of karst processes, as basic elements for modelling. The possibility to collect data directly from the subsoil, thanks to speleological explorations, is a precious chance for hydrogeology, and in general, for the environmental sciences. In this contribution we take advantage from a variety of speleological data, plus traditional geological surveys, to study groundwater flow in the karst of Apulia. Many karst processes, indeed, affect the Cretaceous limestones belonging to the Apulia carbonate platform, where the deepest cave in the region opens in the Canale di Pirro polje (altitude 300m a.s.l.). This latter is a W-E elongated tectonic-karst valley, representing one of the most significant karst landforms in this sector of Apulia. The cave reaches groundwater at a depth of -260m from the ground surface, whilst additional 60m below the water table have been explored by diving the flooded channels (total depth of the cave 320m). We deal here with characterization of water flow direction into the fractured and karst aquifer, using a combined approach consisting of analysis of: i) primary and secondary discontinuities, ii) shape, size and orientation of karst conduits, and iii) geometry of the intersections between fractures and karst features. The discontinuities have been analyzed with classical geological survey at the surface, and a semi-automatic extraction of their statistical properties, using the FracPaQ software. To characterize the water flow into the karst channels, we started from collection of available speleological maps of caves in the study area, in order to assess their main directions of development . From this analysis, some preliminary links were summarized: on the polje ridges, the prevailing discontinuity systems were well correlated with cave development, and, in turn, with the main regional tectonic directions (respectively, the SW-NE anti-Apennine, and the NW-SE Apennine systems). At the polje bottom, on the other hand, direction of cave segments and discontinuities are about similar, following the Canale di Pirro polje main elongation (W-E). This first comparison among data from different sources eventually points out that water flows underground following the main structural lineations. These data, together with results of the groundwater flow model, confirm the key role of geo-structural control on karst development, and the possibility of variations at the local scale, as observed at the polje bottom. In karst, the integrated approach of geo-structural discontinuities and karst features and geometry is therefore a fundamental tool to gain insights into the understanding of the main groundwater flow directions

    A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    No full text
    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources. Copyright © 2010 Published by Elsevier B.V. All rights reserved

    An Integrated Approach Based on Numerical Modelling and Geophysical Survey to Map Groundwater Salinity in Fractured Coastal Aquifers

    No full text
    Aquifer over-exploitation may increase coastal seawater intrusion by reducing freshwater availability. Fractured subsurface formations commonly host important freshwater reservoirs along sea coasts. These water resources are particularly vulnerable to the contamination due to seawater infiltration occurring through rapid pathways via fractures. Modeling of density driven fluid flow in fractured aquifers is complex, as their hydrodynamics are controlled by interactions between preferential flow pathways, 3D interconnected fractures and rock-matrix porosity distribution. Moreover, physical heterogeneities produce highly localized water infiltrations that make the modeling of saltwater transport in such aquifers very challenging. The new approach described in this work provides a reliable hydrogeological model suitable to reproduce local advancements of the freshwater/saltwater wedge in coastal aquifers. The proposed model use flow simulation results to estimate water salinities in groundwater at a specific depth (1 m) below water table by means of positions of the Ghyben-Herzberg saltwater/freshwater sharp interface along the coast. Measurements of salinity in 25 boreholes (i.e., salinity profiles) have been used for the model calibration. The results provide the groundwater salinity map in freshwater/saltwater transition coastal zones of the Bari (Southern Italy) fractured aquifer. Non-invasive geophysical measurements in groundwater, particularly into vertical 2D vertical cross-sections, were carried out by using the electrical resistivity tomography (ERT) in order to validate the model results. The presented integrated approach is very easy to apply and gives very realistic salinity maps in heterogeneous aquifers, without simulating density driven water flow in fractures
    corecore