9 research outputs found

    Tracking Salmonella-Specific CD4 T Cells In Vivo Reveals a Local Mucosal Response to a Disseminated Infection

    Get PDF
    AbstractA novel adoptive transfer system was used to track the fate of naive Salmonella-specific CD4 T cells in vivo. These cells showed signs of activation in the Peyer's patches as early as 3 hr after oral infection. The activated CD4 T cells then produced IL-2 and proliferated in the T cell areas of these tissues before migrating into the B cell-rich follicles. In contrast, Salmonella-specific CD4 T cells were not activated in the spleen and very few of these cells migrated to the liver, despite the presence of bacteria in both organs. These results show that the T cell response to pathogenic Salmonella infection is localized to the gut-associated lymphoid tissue and does not extend efficiently to the major sites of late infection

    Unraveling the Link between Periodontitis and Inflammatory Bowel Disease: Challenges and Outlook

    Full text link
    Periodontitis and Inflammatory Bowel Disease (IBD) are chronic inflammatory conditions, characterized by microbial dysbiosis and hyper-immunoinflammatory responses. Growing evidence suggest an interconnection between periodontitis and IBD, implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an Oral-Gut axis, marked by a higher prevalence of periodontitis in IBD patients and vice versa. The specific mechanisms linking periodontitis and IBD remain to be fully elucidated, but emerging evidence points to the ectopic colonization of the gut by oral bacteria, which promote intestinal inflammation by activating host immune responses. This review presents an in-depth examination of the interconnection between periodontitis and IBD, highlighting the shared microbiological and immunological pathways, and proposing a multi-hit hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.Comment: Total Words: 7,016 Figures: 3 Tables: 2 Reference: 34

    In Vivo Activation of Naive CD4(+) T Cells in Nasal Mucosa-Associated Lymphoid Tissue following Intranasal Immunization with Recombinant Streptococcus gordonii

    No full text
    The antigen-specific primary activation of CD4(+) T cells was studied in vivo by adoptive transfer of ovalbumin-specific transgenic T cells (KJ1-26(+) CD4(+)) following intranasal immunization with recombinant Streptococcus gordonii. A strain of S. gordonii expressing on its surface a model vaccine antigen fused to the ovalbumin (OVA) peptide from position 323 to 339 was constructed and used to study the OVA-specific T-cell activation in nasal mucosa-associated lymphoid tissue (NALT), lymph nodes, and spleens of mice immunized by the intranasal route. The recombinant strain, but not the wild type, activated the OVA-specific CD4(+) T-cell population in the NALT (89% of KJ1-26(+) CD4(+) T cells) just 3 days following immunization. In the cervical lymph nodes and in the spleen, the percentage of proliferating cells was initially low, but it reached the peak of activation at day 5 (90%). This antigen-specific clonal expansion of KJ1-26(+) CD4(+) T cells after intranasal immunization was obtained with live and inactivated recombinant bacteria, and it indicates that the NALT is the site of antigen-specific T-cell priming

    Discriminating between Interstitial and Circulating Leukocytes in Tissues of the Murine Oral Mucosa Avoiding Nasal-Associated Lymphoid Tissue Contamination

    No full text
    Periodontitis is a chronic inflammatory response to a microbial biofilm that destroys bone and soft tissues supporting the teeth. Murine models of periodontitis based on Porphyromonas gingivalis (Pg) colonization have shown that extravasation of leukocytes into oral tissue is critical to driving alveolar bone destruction. Identifying interstitial leukocytes is key to understanding the immunopathogenesis of periodontitis. Here, we describe a robust flow cytometry assay based on intravenous FITC-conjugated anti-mouse CD45 mAb that distinguishes interstitial leukocytes in the oral mucosa of mice from those circulating within the vasculature or in post-dissection contaminating blood. Unaccounted circulating leukocytes skewed the relative frequency of B cells and granulocytes and inflated the numbers of all leukocyte cell types. We also describe a dissection technique that avoids contamination of oral mucosal tissues with nasal-associated lymphoid tissues (NALT), a B cell rich organ that can inflate leukocyte numbers at least 10-fold and skew the assessment of interstitial CD4 T cell phenotypes. Unlike circulating CD4 T cells, interstitial CD4 T cells were almost exclusively antigen-experienced cells (CD44hi). We report for the first time the presence of antigen-experienced Pg-specific CD4 T cells in NALT following oral feeding of mice with Pg. This new combined flow cytometry and dissection approach allows identification of leukocytes infiltrating the connective tissues of the murine oral mucosa and avoids confounding analyses of leukocytes not recruited to inflamed oral mucosal tissues in disease conditions like periodontitis, candidiasis, or sialadenitis

    Disinfection and Biocompatibility of Titanium Surfaces Treated with Glycine Powder Airflow and Triple Antibiotic Mixture: An In Vitro Study

    No full text
    The aim of this in vitro study was to compare three disinfection protocols of biofilm-coated machined (MAC) and acid etched (SLA) commercial pure Grade 4 Titanium disks. Samples were infected with a vial of polymicrobial biofilm to simulate peri-implantitis in vitro. Seventeen MAC and twenty SLA titanium disks were randomly assigned to: (1) glycine powder air-flow (GYPAP) for 1 min; (2) a local delivered triple paste antibiotic composed by a gel mixture with ciprofloxacin, metronidazole, and clarithromycin (3MIX) for 1 h; and (3) a combination of both (GYPAP + 3MIX). Biocompatibility of the titanium disks after each treatment protocol was assessed by measurement of adhesion and growth of adipose-derived mesenchymal stem cells (ASCs) after 24 and 72 h. A confocal laser scanning microscope (CLSM) assessed the antibacterial effect of each treatment. Data of the antibacterial efficacy and cell viability were presented as mean with standard deviation and calculated by one-way ANOVA with multiple comparisons via Bonferroni tests. Results were considered significant with p p < 0.05). In conclusion, data showed that the combination of GYPAP and 3MIX could be preferred to the other protocols, especially in presence of SLA titanium surface
    corecore