18 research outputs found

    Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology

    Get PDF
    Motor neuron–specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease

    Analysis of Gga Null Mice Demonstrates a Non-Redundant Role for Mammalian GGA2 during Development

    Get PDF
    Numerous studies using cultured mammalian cells have shown that the three GGAs (Golgi-localized, gamma-ear containing, ADP-ribosylation factor- binding proteins) function in the transport of cargo proteins between the trans- Golgi network and endosomes. However, the in vivo role(s) of these adaptor proteins and their possible functional redundancy has not been analyzed. In this study, the genes encoding GGAs1-3 were disrupted in mice by insertional mutagenesis. Loss of GGA1 or GGA3 alone was well tolerated whereas the absence of GGA2 resulted in embryonic or neonatal lethality, depending on the genetic background of the mice. Thus, GGA2 mediates a vital function that cannot be compensated for by GGA1and/or GGA3. The combined loss of GGA1 and GGA3 also resulted in a high incidence of neonatal mortality but in this case the expression level of GGA2 may be inadequate to compensate for the loss of the other two GGAs. We conclude that the three mammalian GGAs are essential proteins that are not fully redundant

    Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network

    No full text
    Clathrin coated vesicles mediate endocytosis and transport between the trans Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo, and membranes. Two major types of clathrin adaptors act in TGN-endosome traffic, Gga proteins and the AP-1 complex. Here we characterize the relationship between Gga proteins, AP-1, and other TGN clathrin adaptors using live cell and superresolution microscopy in yeast. We present evidence that Gga proteins and AP-1 are recruited sequentially in two waves of coat assembly at the TGN. Mutations that decrease phosphatidylinositol 4-phosphate (PI4P) levels at the TGN slow or uncouple AP-1 coat assembly from Gga coat assembly. Conversely, enhanced PI4P synthesis shortens the time between adaptor waves. Gga2p binds directly to the TGN PI4-kinase Pik1p and contributes to Pik1p recruitment. These results identify a PI4P-based mechanism for regulating progressive assembly of adaptor-specific clathrin coats at the TGN

    Adaptor and Clathrin Exchange at the Plasma Membrane and trans-Golgi Network

    No full text
    We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at the trans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K(+) depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked

    GGA function is required for maturation of neuroendocrine secretory granules

    No full text
    Secretory granule (SG) maturation has been proposed to involve formation of clathrin-coated vesicles (CCVs) from immature SGs (ISGs). We tested the effect of inhibiting CCV budding by using the clathrin adaptor GGA (Golgi-associated, Îł-ear-containing, ADP-ribosylation factor-binding protein) on SG maturation in neuroendocrine cells. Overexpression of a truncated, GFP-tagged GGA, VHS (Vps27, Hrs, Stam)-GAT (GGA and target of myb (TOM))-GFP led to retention of MPR, VAMP4, and syntaxin 6 in mature SGs (MSGs), suggesting that CCV budding from ISGs is inhibited by the SG-localizing VHS-GAT-GFP. Furthermore, VHS-GAT-GFP-overexpression disrupts prohormone convertase 2 (PC2) autocatalytic cleavage, processing of secretogranin II to its product p18, and the correlation between PC2 and p18 levels. All these effects were not observed if full-length GGA1-GFP was overexpressed. Neither GGA1-GFP nor VHS-GAT-GFP perturbed SG protein budding from the TGN, or homotypic fusion of ISGs. Reducing GGA3 levels by using short interfering (si)RNA also led to VAMP4 retention in SGs, and inhibition of PC2 activity. Our results suggest that inhibition of CCV budding from ISGs downregulates the sorting from the ISGs and perturbs the intragranular activity of PC2
    corecore