1,025 research outputs found

    A high-resolution mm and cm study of the obscured LIRG NGC 4418 - A compact obscured nucleus fed by in-falling gas?

    Get PDF
    The aim of this study is to constrain the dynamics, structure and feeding of the compact nucleous of NGC4418, and to reveal the nature of the main hidden power source: starburst or AGN. We obtained high spatial resolution observations of NGC4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz with the SMA very extended configuration. We use the continuum morphology and flux density to estimate the size of the emitting region, the star formation rate and the dust temperature. Emission lines are used to study the kinematics through position-velocity diagrams. Molecular emission is studied with population diagrams and by fitting an LTE synthetic spectrum. We detect bright 1mm line emission from CO, HC3N, HNC and C34S, and 1.4 GHz absorption from HI. The CO 2-1 emission and HI absorption can be fit by two velocity components at 2090 and 2180 km s-1. We detect vibrationally excited HC3N and HNC, with Tvib 300K. Molecular excitation is consistent with a layered temperature structure, with three main components at 80, 160 and 300 K. For the hot component we estimate a source size of less than 5 pc. The nuclear molecular gas surface density of 1e4 Msun pc-2 is extremely high, and similar to that found in the ultra-luminous infrared galaxy (ULIRG) Arp220. Our observations confirm the the presence of a molecular and atomic in-flow, previously suggested by Herschel observations, which is feeding the activity in the center of NGC4418. Molecular excitation confirms the presence of a very compact, hot dusty core. If a starburst is responsible for the observed IR flux, this has to be at least as extreme as the one in Arp220, with an age of 3-10 Myr and a star formation rate >10 Msun yr-1. If an AGN is present, it must be extremely Compton-thick.Comment: 18 pages, 11 figures, Accepted for publication by A&A on 10/6/201

    A survey of HC_3N in extragalactic sources: Is HC_3N a tracer of activity in ULIRGs?

    Get PDF
    Context. HC_3N is a molecule that is mainly associated with Galactic star-forming regions, but it has also been detected in extragalactic environments. Aims. To present the first extragalactic survey of HC_3N, when combining earlier data from the literature with six new single-dish detections, and to compare HC_3N with other molecular tracers (HCN, HNC), as well as other properties (silicate absorption strength, IR flux density ratios, C_(II) flux, and megamaser activity). Methods. We present mm IRAM 30 m, OSO 20 m, and SEST observations of HC_3N rotational lines (mainly the J = 10–9 transition) and of the J = 1–0 transitions of HCN and HNC. Our combined HC_3N data account for 13 galaxies (excluding the upper limits reported for the non-detections), while we have HCN and HNC data for more than 20 galaxies. Results. A preliminary definition “HC_3N-luminous galaxy” is made based upon the HC_3N/HCN ratio. Most (~80%) HC_3N-luminous galaxies seem to be deeply obscured galaxies and (U)LIRGs. A majority (~60% or more) of the HC3N-luminous galaxies in the sample present OH mega- or strong kilomaser activity. A possible explanation is that both HC_3N and OH megamasers need warm dust for their excitation. Alternatively, the dust that excites the OH megamaser offers protection against UV destruction of HC_3N. A high silicate absorption strength is also found in several of the HC_3N-luminous objects, which may help the HC3N to survive. Finally, we find that a high HC_3N/HCN ratio is related to a high dust temperature and a low C_(II) flux

    Time to AIDS from 1992 to 1999 in HIV-1-Infected Subjects with Known Date of Infection.

    Get PDF
    To estimate the change in AIDS incubation time during three periods characterized by different availability of antiretroviral treatments, data from the French Hospital Database on HIV of 4702 HIV-1-positive subjects with a documented date of infection were analyzed. Times from seroconversion to AIDS were compared in three periods: period 1 from January 1992 to June 1995 (monotherapy); period 2 from July 1995 to June 1996 (dual therapy); and period 3 from July 1996 to June 1999 (triple therapy). Nonparametric survival analyses were performed to account for staggered entries in the database and during each period. From periods 1 to 3, antiretroviral treatments were initiated earlier after infection, more subjects were treated, and the nature of regimens changed (25.6% of subjects were treated with monotherapy in period 1, 34.6% were treated with dual therapy in period 2, and 53.4% were treated with triple therapy in period 3). Compared with period 1, the relative hazard (RH) of AIDS was 0.31 in period 3 (95% confidence interval [CI]: 0.24-0.39). When comparing period 3 with period 2, the RH of AIDS was 0.36 (CI: 0.29-0.45). Assuming a log normal distribution, the median time to AIDS was estimated as 8.0 years in period 1 (CI: 6.0-10.6), 9.8 years in period 2 (CI: 8.5, 11.2), and 20.0 years in period 3 (CI: 17.1-23.3). This lengthening in time to AIDS from 1992 to 1999 was particularly marked in the period after the introduction of triple therapy, including protease inhibitors

    Radio continuum and X-ray emission from the most extreme FIR-excess galaxy NGC 1377: An extremely obscured AGN revealed

    Get PDF
    Galaxies which strongly deviate from the radio-far IR correlation are of great importance for studies of galaxy evolution as they may be tracing early, short-lived stages of starbursts and active galactic nuclei (AGNs). The most extreme FIR-excess galaxy NGC1377 has long been interpreted as a young dusty starburst, but millimeter observations of CO lines revealed a powerful collimated molecular outflow which cannot be explained by star formation alone. We present new radio observations at 1.5 and 10 GHz obtained with the Jansky Very Large Array (JVLA) and Chandra X-ray observations towards NGC1377. The observations are compared to synthetic starburst models to constrain the properties of the central energy source. We obtained the first detection of the cm radio continuum and X-ray emission in NGC1377. We find that the radio emission is distributed in two components, one on the nucleus and another offset by 4"".5 to the South-West. We confirm the extreme FIR-excess of the galaxy, with a qFIRq_\mathrm{FIR}\simeq4.2, which deviates by more than 7-σ\sigma from the radio-FIR correlation. Soft X-ray emission is detected on the off-nucleus component. From the radio emission we estimate for a young (<10<10 Myr) starburst a star formation rate SFR<<0.1 M_\odot yr1^{-1}. Such a SFR is not sufficient to power the observed IR luminosity and to drive the CO outflow. We find that a young starburst cannot reproduce all the observed properties of the nucleus of NGC1377. We suggest that the galaxy may be harboring a radio-quiet, obscured AGN of 106^6M_\odot, accreting at near-Eddington rates. We speculate that the off-nucleus component may be tracing an hot-spot in the AGN jet.Comment: 14 pages, accepted for publication on Astronomy and Astrophysics on 08/07/201

    Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies: An ALMA mm-wave spectral scan of NGC 4418

    Get PDF
    We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and six vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105^5 and 107^7 cm3^{-3}. The spectrum is dominated by vibrationally excited HC3_3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find high abundances of HC3_3N, SiO, H2_2S, and c-HCCCH and a low CH3_3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. The similar molecular abundances observed towards NCG 4418 and Arp 220 are consistent with a hot gas-phase chemistry, with the relative abundances of SiO and CH3_3OH being regulated by shocks and X-ray driven dissociation. The bright emission from vibrationally excited species confirms the presence of a compact IR source, with an effective diameter 350 K. The molecular abundances and the vibrationally excited spectrum are consistent with a young AGN/starburst system. We suggest that NGC 4418 may be a template for a new kind of chemistry and excitation, typical of compact obscured nuclei (CON). Because of the narrow line widths and bright molecular emission, NGC 4418 is the ideal target for further studies of the chemistry in CONs.Comment: accepted by A&A on 29/06/201

    Ocular Refraction at Birth and Its Development During the First Year of Life in a Large Cohort of Babies in a Single Center in Northern Italy

    Get PDF
    The purpose of this study was to investigate refraction at birth and during the first year of life in a large cohort of babies born in a single center in Northern Italy. We also aimed to analyze refractive errors in relation to the gestational age at birth. An observational ophthalmological assessment was performed within 24 h of birth on 12,427 newborns. Refraction was examined using streak retinoscopy after the administration of tropicamide (1%). Values in the range of between +0.50 ≤ D ≤ +4.00 were defined as physiological refraction at birth. Newborns with refraction values outside of the physiological range were followed up during the first year of life. Comparative analyses were conducted in a subgroup of babies with known gestational ages. The following distribution of refraction at birth was recorded: 88.03% of the babies had physiological refraction, 5.03% had moderate hyperopia, 2.14% had severe hyperopia, 3.4%, had emmetropia, 0.45%, had myopia, 0.94% had astigmatism, and 0.01% had anisometropia. By the end of the first year of life, we observed reductions in hyperopia and astigmatism, and stabilization of myopia. Preterm babies had a four-fold higher risk of congenital myopia and a three-fold higher risk of congenital emmetropia as compared to term babies. Refraction profiles obtained at birth changed during the first year of life, leading to a normalization of the refraction values. Gestational age at birth affected the incidence of refractive errors and amblyopia

    Evidence for a chemically differentiated outflow in Mrk 231

    Get PDF
    Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO+^+ J=10J=1\rightarrow0 and J=21J=2\rightarrow1 of the ultraluminous infrared galaxy Mrk~231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO+^+ J=10J=1\rightarrow0 and J=32J=3\rightarrow2, and HNC J=10J=1\rightarrow0 in the same source. Results: In the line wings of the HCN, HCO+^+, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO+^+ outflow emission we find an average abundance ratio X(HCN)/X(HCO+)1000X(\mathrm{HCN})/X(\mathrm{HCO}^+)\gtrsim1000. Assuming a clumpy outflow, modelling of the HCN and HCO+^+ emission produces strongly inconsistent outflow masses. Conclusions: Both the anti-correlated outflow features of HCN and HCO+^+ and the different outflow masses calculated from the radiative transfer models of the HCN and HCO+^+ emission suggest that the outflow is chemically differentiated. The separation between HCN and HCO+^+ could be an indicator of shock fronts present in the outflow, since the HCN/HCO+^+ ratio is expected to be elevated in shocked regions. Our result shows that studies of the chemistry in large-scale galactic outflows can be used to better understand the physical properties of these outflows and their effects on the interstellar medium (ISM) in the galaxy.Comment: 12 pages, 8 figures, accepted for publication in A&

    A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC1377?

    Get PDF
    With high resolution (0."25 x 0."18) ALMA CO 3-2 observations of the nearby (D=21 Mpc, 1"=102 pc), extremely radio-quiet galaxy NGC1377, we have discovered a high-velocity, very collimated nuclear outflow which we interpret as a molecular jet with a projected length of +-150 pc. Along the jet axis we find strong velocity reversals where the projected velocity swings from -150 km/s to +150 km/s. A simple model of a molecular jet precessing around an axis close to the plane of the sky can reproduce the observations. The velocity of the outflowing gas is difficult to constrain due to the velocity reversals but we estimate it to be between 240 and 850 km/s and the jet to precess with a period P=0.3-1.1 Myr. The CO emission is clumpy along the jet and the total molecular mass in the high-velocity (+-(60 to 150 km/s)) gas lies between 2e6 Msun (light jet) and 2e7 Msun (massive jet). There is also CO emission extending along the minor axis of NGC1377. It holds >40% of the flux in NGC1377 and may be a slower, wide-angle molecular outflow which is partially entrained by the molecular jet. We discuss the driving mechanism of the molecular jet and suggest that it is either powered by a very faint radio jet or by an accretion disk-wind similar to those found towards protostars. The nucleus of NGC1377 harbours intense embedded activity and we detect emission from vibrationally excited HCN J=4-3 v_2=1f which is consistent with hot gas and dust. We find large columns of H2 in the centre of NGC1377 which may be a sign of a high rate of recent gas infall. The dynamical age of the molecular jet is short (<1 Myr), which could imply that it is young and consistent with the notion that NGC1377 is caught in a transient phase of its evolution. However, further studies are required to determine the age of the molecular jet, its mass and the role it is playing in the growth of the nucleus of NGC1377.Comment: This is a revised and expanded version of a previous submission which now has 13 pages, 6 figures (+ 4 in the Appendix) and is accepted for publication in Astronomy & Astrophysic

    Molecular gas in the northern nucleus of Mrk273: Physical and chemical properties of the disk and its outflow

    Get PDF
    Aiming to characterise the properties of the molecular gas in the ultraluminous infrared galaxy Mrk273 and its outflow, we used the NOEMA interferometer to image the dense gas molecular tracers HCN, HCO+, HNC, HOC+ and HC3N at 86GHz and 256GHz with angular resolutions of 4.9x4.5 arcsec (3.7x3.4 kpc) and 0.61x0.55 arcsec (460x420 pc). We also modelled the flux of several H2O lines observed with Herschel using a radiative transfer code that includes excitation by collisions as well as by far-infrared photons. The disk of the Mrk273 north nucleus has two components with decoupled kinematics. The gas in the outer parts (1.5 kpc) rotates with a south-east to north-west direction, while in the inner disk (300 pc) follows a north-east to south-west rotation. The central 300 pc, which hosts a compact starburst region, is filled with dense and warm gas, contains a dynamical mass of (4-5)x10^9M_sun, a luminosity of L'_HCN=(3-4)x10^8 K km/s pc^2, and a dust temperature of 55 K. At the very centre, a compact core with R~50 pc has a luminosity of L_IR=4x10^11L_sun (30% of the total infrared luminosity), and a dust temperature of 95 K. The core is expanding at low velocities ~50-100 km/s, probably affected by the outflowing gas. We detect the blue-shifted component of the outflow, while the red-shifted counterpart remains undetected in our data. Its cold and dense phase reaches fast velocities up to ~1000 km/s, while the warm outflowing gas has more moderate maximum velocities of ~600 km/s. The outflow is detected as far as 460 pc from the centre in the northern direction, and has a mass of dense gas <8x10^8M_sun. The difference between the position angles of the inner disk (~70 degree) and the outflow (~10 degree) indicates that the outflow is likely powered by the AGN, and not by the starburst. Regarding the chemistry, we measure an extremely low HCO+/HOC+ ratio of 10+-5 in the inner disk of Mrk273.Comment: Accepted for publication in A&A. 21 pages, 17 figures, 7 tables, and a lot of interesting tex

    Luminous, pc-scale CO 6-5 emission in the obscured nucleus of NGC1377

    Get PDF
    High resolution submm observations are important in probing the morphology, column density and dynamics of obscured active galactic nuclei (AGNs). With high resolution (0.06 x 0.05) ALMA 690 GHz observations we have found bright (TB >80 K) and compact (FWHM 10x7 pc) CO 6-5 line emission in the nucleus of the extremely radio-quiet galaxy NGC1377. The integrated CO 6-5 intensity is aligned with the previously discovered jet/outflow of NGC1377 and is tracing the dense (n>1e4 cm-3), hot gas at the base of the outflow. The velocity structure is complex and shifts across the jet/outflow are discussed in terms of jet-rotation or separate, overlapping kinematical components. High velocity gas (deltaV +-145 km/s) is detected inside r<2-3 pc and we suggest that it is emerging from an inclined rotating disk or torus of position angle PA=140+-20 deg with a dynamical mass of approx 3e6 Msun. This mass is consistent with that of a supermassive black hole (SMBH), as inferred from the M-sigma relation. The gas mass of the proposed disk/torus constitutes <3% of the nuclear dynamical mass. In contrast to the intense CO 6-5 line emission, we do not detect dust continuum with an upper limit of S(690GHz)<2mJy. The corresponding, 5 pc, H2 column density is estimated to N(H2)<3e23 cm-2, which is inconsistent with a Compton Thick (CT) source. We discuss the possibility that CT obscuration may be occuring on small (subparsec) or larger scales. From SED fitting we suggest that half of the IR emission of NGC1377 is nuclear and the rest (mostly the far-infrared (FIR)) is more extended. The extreme radio quietness, and the lack of emission from other star formation tracers, raise questions on the origin of the FIR emission. We discuss the possibility that it is arising from the dissipation of shocks in the molecular jet/outflow or from irradiation by the nuclear source along the poles.Comment: 7 pages, 5 figures, submitted to Astronomy and Astrophysic
    corecore