551 research outputs found

    The Effect of Dietary Sodium Restriction on Vascular Stiffness in Hypertension

    Get PDF
    Increased salt consumption is believed to induce high blood pressure (BP)-mediated organ damage, although it is not yet clear whether it reflects a generalized micro- and macrovascular malfunction independent of BP. Exceeding dietary sodium intake is acknowledged to be the main modifiable environmental risk factor for cardiovascular events that accounts for an increase in blood pressure and induces hypertension (HTN)-related target organ damage. Arterial stiffness is well known as an independent cardiovascular risk factor, and sodium intake may be a determinant of arterial stiffness. Even so, the studies that investigated the effect of dietary sodium reduction intake on arterial stiffness in humans provided inconclusive results. Therefore, we aim to perform a review of the available evidence of salt restriction and arterial stiffness and its impact on hypertensive patients

    Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at s \sqrt{s} , sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT_{T}) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT_{T} algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT_{T} values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT_{T} distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT_{T} region, while they underestimate the lower jT_{T} region. The jT_{T} distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT_{T} values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT_{T} values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Neutron emission in ultraperipheral Pb-Pb collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76~TeV. In addition, the cross sections for the exclusive emission of 1, 2, 3, 4 and 5 forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of Pb208 nuclei at sNN=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of Pb207,206,205,204,203, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    Inclusive quarkonium production in pp collisions at s=5.02\sqrt{s} = 5.02 TeV

    No full text
    This article reports on the inclusive production cross section of several quarkonium states, J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, Υ(1S)\Upsilon\rm(1S), Υ(2S)\Upsilon\rm(2S), and Υ(3S)\Upsilon\rm(3S), measured with the ALICE detector at the LHC, in \pp collisions at s=5.02\sqrt{s} = 5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<42.5 < y < 4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 μ\sigma_{\mathrm{J}/\psi} = 5.88 \pm 0.03 \pm 0.34\ \mub, σψ(2S)=0.87±0.06±0.10 μ\sigma_{\psi {\rm (2S)}} = 0.87 \pm 0.06 \pm 0.10\ \mub, σΥ(1S)=45.5±3.9±3.5\sigma_{\Upsilon\rm(1S)} = 45.5 \pm 3.9 \pm 3.5 nb, σΥ(2S)=22.4±3.2±2.7\sigma_{\Upsilon\rm(2S)} = 22.4 \pm 3.2 \pm 2.7 nb, and σΥ(3S)=4.9±2.2±1.0\sigma_{\Upsilon\rm(3S)} = 4.9 \pm 2.2 \pm 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. The transverse-momentum (pTp_{\rm T}) and rapidity (yy) differential cross sections for J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, Υ(1S)\Upsilon\rm(1S), and the ψ(2S)\psi {\rm (2S)}-to-J/ψ\mathrm{J}/\psi cross section ratios are presented. For the first time, the cross sections of the three Υ\Upsilon states, as well as the ψ(2S)\psi {\rm (2S)} one as a function of pTp_{\rm T} and yy, are measured at s=5.02\sqrt{s} = 5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ\mathrm{J}/\psipTp_{\rm T} reach with respect to previously published results. A comparison with ALICE measurements in pp collisions at s=2.76\sqrt{s} = 2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dη〉), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}〉) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dη〉 showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Measurement of the Cross Sections of Ξc0\Xi^0_{c} and Ξc+\Xi^+_{c} Baryons and of the Branching-Fraction Ratio BR(Ξc0Ξe+νe\Xi^0_{c} \rightarrow \Xi^-{e}^+\nu_{ e})/BR(Ξc0Ξπ+\Xi^0_{c} \rightarrow \Xi^-\pi^+) in pp collisions at 13 TeV

    No full text
    The pTp_T-differential cross sections of prompt charm-strange baryons Ξc0_c^0 and Ξc+_c^+ were measured at midrapidity (|y|<0.5) in proton-proton (pp) collisions at a center-of-mass energy s\sqrt{s} = 13 TeV with the ALICE detector at the LHC. The Ξc0_c^0 baryon was reconstructed via both the semileptonic decay (Ξ^-e+^+νe_e) and the hadronic decay (Ξ^-π+^+) channels. The Ξc+_c^+ baryon was reconstructed via the hadronic decay (Ξ^-π+^+π+^+) channel. The branching-fraction ratio BR(Ξc0_c^0→Ξ^-e+^+νe_e)/BR(Ξc0_c^0→Ξ^-π+^+) = 1.38±0.14(stat)±0.22(syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pTp_T) dependence of the Ξc0_c^0- and Ξc+_c^+-baryon production relative to the D0^0 meson and to the Σc0,+,++_c^{0,+,++}- and Λc+_c^+-baryon production are reported. The baryon-to-meson ratio increases toward low pTp_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e+^+e^-) and hadronic collisions

    Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at sNN=2.76\sqrt{s_{_{NN}}}=2.76 TeV

    No full text
    The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions

    Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at s\sqrt{s} = 5.02, 7 and 13 TeV

    No full text
    The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies s = 5.02\sqrt{s}~=~5.02, 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range (η<1.5|\eta | < 1.5). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval η<1|\eta |<1. The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the latter being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions
    corecore