28 research outputs found

    Synthetic sex pheromone in a long-lasting lure attracts the visceral leishmaniasis vector, lutzomyia longipalpis, for up to 12 weeks in Brazil

    Get PDF
    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites

    Sand fly synthetic sex-aggregation pheromone co-located with insecticide reduces the incidence of infection in the canine reservoir of visceral leishmaniasis: a stratified cluster randomised trial

    Get PDF
    The predominant sand fly vector of the intracellular parasite Leishmania infantum, that causes human and canine visceral leishmaniasis in the Americas, is Lutzomyia longipalpis. Dogs are the proven reservoir. Vector control tools to reduce transmission suited to this predominantly exophilic vector are lacking. Insecticide-impregnated dog collars protect dogs against infectious bites from sand fly vectors, and result in reductions of new infections in both dogs and humans. However, collars are costly for endemic communities, and alternative approaches are needed. Recently the bulk synthesised sex-aggregation pheromone of male Lu. longipalpis was shown to attract large numbers of conspecific females to lethal pyrethroid insecticides, indicating the potential for use in a vector control application. This study, conducted in Brazil, evaluated the efficacy of this novel lure-and-kill approach to reduce seroconversion and infection incidence with L. infantum in the canine reservoir, in addition to measuring its impact on household abundance of Lu. longipalpis. Deployed in 14 stratified clusters, the outcomes were compared to those attributed to insecticide impregnated collars fitted to dogs in another 14 clusters; each intervention was compared to 14 clusters that received placebo treatments. The beneficial effects of the lure-and-kill method were most noticeable on confirmed infection incidence and clinical parasite loads, and in reducing sand fly abundance. The overall effect of the two interventions were not statistically dissimilar, though the confidence intervals were broad. We conclude that the novel low-cost lure-and-kill approach should be added to the vector control toolbox against visceral leishmaniasis in the Americas
    corecore