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Abstract

Objective

To evaluate the efficacy of a synthetic sex-aggregation pheromone of the sand fly vector Lu.

longipalpis, co-located with residual insecticide, to reduce the infection incidence of Leish-

mania infantum in the canine reservoir.

Methods

A stratified cluster randomised trial was designed to detect a 50% reduction in canine inci-

dent infection after 24 months in 42 recruited clusters, randomly assigned to one of three

intervention arms (14 cluster each): synthetic pheromone + insecticide, insecticide-impreg-

nated dog collars, or placebo control. Infection incidence was measured by seroconversion

to anti-Leishmania serum antibody, Leishmania parasite detection and canine tissue
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parasite loads. Changes in relative Lu. longipalpis abundance within households were mea-

sured by setting three CDC light traps per household.

Results

A total 1,454 seronegative dogs were followed-up for a median 15.2 (95% C.I.s: 14.6, 16.2)

months per cluster. The pheromone + insecticide intervention provided 13% (95% C.I. 0%,

44.0%) protection against anti-Leishmania antibody seroconversion, 52% (95% C.I. 6.2%,

74�9%) against parasite infection, reduced tissue parasite loads by 53% (95% C.I. 5.4%,

76.7%), and reduced household female sand fly abundance by 49% (95% C.I. 8.2%,

71.3%). Variation in the efficacy against seroconversion varied between trial strata. Equiva-

lent protection attributed to the impregnated-collars were 36% (95% C.I. 14.4%, 51.8%),

23% (95% C.I. 0%, 57�5%), 48% (95% C.I. 0%, 73.4%) and 43% (95% C.I. 0%, 67.9%),

respectively. Comparison of the two interventions showed no statistically consistent differ-

ences in their efficacies; however, the errors were broad for all outcomes. Reductions in

sand fly numbers were predominant where insecticide was located (chicken and dog sleep-

ing sites), with no evidence of insecticide-induced repellence onto humans or dogs.

Conclusion

The synthetic pheromone co-located with insecticide provides protection particularly against

canine L. infantum parasite transmission and sand fly vector abundance. The effect esti-

mates are not dissimilar to those of the insecticide-impregnated collars, which are docu-

mented to reduce canine infection incidence, human infection and clinical VL disease

incidence, in different global regions. The trialled novel lure-and-kill approach is a low-cost

potential vector control tool against ZVL in the Americas.

Author summary

The predominant sand fly vector of the intracellular parasite Leishmania infantum, that

causes human and canine visceral leishmaniasis in the Americas, is Lutzomyia longipalpis.
Dogs are the proven reservoir. Vector control tools to reduce transmission suited to this

predominantly exophilic vector are lacking. Insecticide-impregnated dog collars protect

dogs against infectious bites from sand fly vectors, and result in reductions of new infec-

tions in both dogs and humans. However, collars are costly for endemic communities,

and alternative approaches are needed. Recently the bulk synthesised sex-aggregation

pheromone of male Lu. longipalpis was shown to attract large numbers of conspecific

females to lethal pyrethroid insecticides, indicating the potential for use in a vector control

application. This study, conducted in Brazil, evaluated the efficacy of this novel lure-and-

kill approach to reduce seroconversion and infection incidence with L. infantum in the

canine reservoir, in addition to measuring its impact on household abundance of Lu. long-
ipalpis. Deployed in 14 stratified clusters, the outcomes were compared to those attributed

to insecticide impregnated collars fitted to dogs in another 14 clusters; each intervention

was compared to 14 clusters that received placebo treatments. The beneficial effects of the

lure-and-kill method were most noticeable on confirmed infection incidence and clinical

parasite loads, and in reducing sand fly abundance. The overall effect of the two interven-

tions were not statistically dissimilar, though the confidence intervals were broad. We
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conclude that the novel low-cost lure-and-kill approach should be added to the vector

control toolbox against visceral leishmaniasis in the Americas.

Introduction

Sustainable control of arthropod vectors to reduce infectious disease transmission represents a

major challenge confronting public health programmes[1]. Standard approaches such as

indoor residual spraying of insecticides (IRS) or insecticide treated nets (ITNs), are most effec-

tive against insecticide-susceptible vector populations that are endophilic and/or bite when

hosts at risk are under ITNs e.g. as against Anopheles gambiae[2]. Suboptimal insecticide-

based vector control occurs when contact rates with insecticide treated surfaces by susceptible

vectors is less frequent[3], as expected following IRS/ITN campaigns against exophilic vectors.

One potential solution is to lure biting vectors to strategically placed insecticide using attrac-

tant semiochemicals (kairomones and pheromones). Specific insect pheromones mediate con-

specific mating (sex), aggregation, oviposition or invitation behaviour[4]. In the agricultural

sector, integrated pest management programs deploy pest pheromones to monitor and reduce

pest populations and disrupt pest mating aggregations, with the aim to limit crop yield loss,

environmental damage, and insecticide use[4–6]. In contrast, whilst some pheromones pro-

duced by vectors of public or veterinary health importance have been identified e.g.[7], they

appear to be absent or not characterised in many of the most important human and animal

disease vectors. Indeed, to our knowledge, there are no published studies that have tested the

efficacy of a vector pheromone to reduce infection or disease incidence.

One important vector species that produces a large amount of sex-aggregation pheromone

is Lutzomyia longipalpis (Diptera: Psychodidae). This is the principal vector of Leishmania
infantum (Kinetoplastida: Trypanosomatidae) in the Americas, a protist parasite that causes

human and canine zoonotic visceral leishmaniasis (ZVL)[8]. Domestic dogs are the proven

reservoir host[9], though non-reservoir (“dead-end”) hosts, such as chickens and other domes-

tic livestock, are significant blood sources, and assumed to help maintain sand fly populations

[10].

The majority of incident human ZVL cases occur in Brazil[8], where the national ZVL con-

trol program includes human ZVL case detection and treatment, and reactive IRS of houses

and animal sheds within 200m of a newly detected human case[11, 12]. To reduce the canine

reservoir population, the program recommends test-and-slaughter or chemotherapeutic treat-

ment of Leishmania infected dogs, canine vaccination and/or application of topical insecti-

cides[11]. Despite this extensive arsenal of control tools, there is no apparent decline in human

case incidence[13–15]. On the contrary, ZVL has expanded into new geographical regions and

into urban settings[15–17]. Thus, sustainable alternative or complimentary methods to combat

transmission are needed.

The recent bulk synthesis of the male Lu. longipalpis sex-aggregation pheromone[18] pro-

vides such an opportunity[19]. Male Lu. longipalpis release the pheromone from abdominal

glands, which attracts conspecific males and appetitive females. The resulting leks are formed

on or near animal hosts, where the sand flies copulate and the females blood-feed, which

results in L. infantum transmission[20–23]. In field experiments, the synthetic pheromone

attracts significantly more Lu. longipalpis to experimental chicken sheds than to those without

the synthetic pheromone[24]. And when co-located with pyrethroid insecticide applied to

experimental sheds, it attracts and kills significantly more Lu. longipalpis compared to

untreated control sheds[25]. In a long-lasting controlled release formulation, the pheromone
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is attractive for up to 3 months[19]. To date, field trials to evaluate the efficacy of this novel

lure-and-kill approach to reduce Leishmania transmission have not been conducted.

Here we report the results of a stratified cluster randomised trial, conducted in Brazil, to

test the efficacy of the synthetic pheromone co-located with a pyrethroid insecticide, to reduce

(i) the incidence of Leishmania exposure and infection in the canine reservoir; (ii) the abun-

dance of Lu. longipalpis around households; and (iii) to compare these outcomes in relation to

contemporary deployment of deltamethrin-impregnated Scalibor collars fitted to dogs.

Methods

Study location

The study was conducted between July 2012 and May 2016 in semi-urban/rural towns and in

suburban districts of Araçatuba city (21204011S; 50458883W), located in the administrative

region of Araçatuba, N.W. São Paulo state, Brazil. ZVL expanded within this region over the

last two decades, where it is now considered endemic[16, 26–29]. The human case incidence

was 6.3 per 100,000 with a case fatality rate of 9% recorded in 2011 just prior to the study[27].

This represents the highest human VL incidence within São Paulo state which recorded 2,332

autochthonous cases between 1999 and 2013[28, 30]. Canine seroprevalences in the study

region ranged from 12–45% (Superintendência de Controle de Endemias [SUCEN], unpub-

lished data).

Study design

The trial was designed as a stratified cluster randomised trial (CRT) where the towns (munici-

palities), and Araçatuba subdistricts, were designated as independent clusters. Clusters, house-

holds and dogs were recruited in a three–step procedure (Fig 1).

Recruitment

Clusters. Forty towns within the Araçatuba administrative region and 12 subdistricts of

Araçatuba city, were listed for potential trial inclusion. Cluster inclusion criteria included (i)

evidence of recent transmission: at least one confirmed human or/and canine infection within

the 4 years prior to the intervention study, by inspection of human case records[30], and

canine testing records in 2006–2008 (SUCEN, unpublished data). (ii) That the location was

within feasible driving time (1.5 hours) of the trial operations centre in Araçatuba; and (iii)

that each cluster was geographically distinct, separated by�1 km to minimise any inter-cluster

contamination by dispersing Lu. longipalpis sand fly vectors. Mark-release-recapture studies

show�97% of Lu. longipalpis recaptures are within 300m of the release location[21, 31, 32].

Thirty-three municipalities and 9 districts of Araçatuba (42 clusters in total) met these

inclusion criteria (Fig 1), being located within an area of approximately 11,250km2.

Houses and dogs. Local health authorities provided lists of households within clusters for

potential recruitment based on criteria that (i) the household maintained at least one chicken

(dead-end host) and at least one seronegative dog (defined below) at the time of recruitment;

and (ii) the householder(s) and their animals were normally resident. Following consultation

with local health authorities, and written permission provided by the municipality health offi-

cer, informed written consent was obtained from dog owners to test their dog(s) for anti-Leish-
mania antibodies (described below).

The study experienced substantial loss-to-follow-up (LTF) of dogs and houses primarily

due to dogs being lost through mortality or unknown causes and/or households no longer
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maintaining chickens or eligible dogs. Thus, to fulfil the statistical power requirements, new

dogs and houses were recruited between November 2012 and October 2014 (see S1 Table).

Cluster stratification

Clusters were then stratified, each assigned to one of three strata based on the initial pre-inter-

vention canine seroprevalence within the cluster, of>50% (strata 1: “high” n = 18 clusters),

<50% (strata 2: “low” n = 15 clusters), or Araçatuba location (strata 3: “mixed high and low”

n = 9 clusters) (Fig 1). Araçatuba clusters were placed in a separate strata as being the regional

capital it was considered to have better resources to manage ZVL, knowledge, attitudes and

practises (KAP) characteristics, and demographics that could affect transmission dynamics in

ways different to in the towns[33].

Randomisation and treatment allocation

Clusters received one of three treatments, namely (i) synthetic pheromone lure co-located

with pyrethroid insecticide; (ii) pyrethroid-impregnated collar fitted to dogs, or (iii) placebo

control. These are described below. Within the three defined strata, clusters were ranked in

descending order of pre-intervention seroprevalence, and then randomly assigned to one of

the three interventions by random number generator in STATA software. All subsequent

within-stratum triplet clusters were similarly assigned alternately to intervention groups,

resulting in 14 clusters in each treatment arm (Fig 1).

The interventions

Synthetic pheromone lures and insecticide arm. The synthetic pheromone formulation

(±-9-methylgermacrene-B [CAS RN: 183158-38-5]) was a copy of the (S)-9-methylgerma-

crene-B pheromone produced by male Lu. longipalpis from the study region[34]. 10mg of the

pheromone was sealed in an 8 cm × 3 cm polythene sachet prototype dispenser designed for

slow release (Russell-IPM Ltd. UK), and equivalent to natural pheromone release by 80,000

male Lu. longipalpis over a 3 month period[19]. Each household received a lure placed within

1m of the main chicken roosting site. Co-located with the pheromone, micro-encapsulated

lambda-cyhalothrin (LC-ME) (1Demand 2.5cs, Syngenta, Brazil) was applied at 20mg a.i. m-2

to surfaces close to chicken roosting sites using a GUARANY 441–10 compression sprayer

(Guarany Industriae Comercio Ltda, Itu, São Paulo, Brazil). Sprayed sites included (i) all avail-

able surfaces in and on chicken coops (32.6% of sites), (ii) from ground level up to 3m of the

roosting tree, paying special attention to roosting branches (52.5%), or (iii) 3m2 (1.5m x 2m)

wall surfaces next to ground perches (7.7%), or similar unusual sites (7.2%). Pheromone lures

and insecticide were replaced on 9 occasions at an average interval of 91 (S.D. 20.0) days (S2

Table).

Insecticide-impregnated collar arm. Scalibor collars (Intervet, MSD Saúde Animal, São

Paulo, Brazil) impregnated with 40mg g-1 deltamethrin, consisted of a 65cm white polyvinyl

chloride strip weighing 25g. Following the manufacturer’s instructions, collars were fitted to

dogs�3 months old, and expected to reach full activity about 7 days after fitting. All seronega-

tive dogs per house were fitted with a Scalibor collar at baseline. At subsequent recruitment

and collaring rounds, all dogs in recruited households were fitted with a collar in order to

reduce transmission from positive, potentially infectious, dogs. The veterinary team fitted and

replaced any lost collars, promoted their correct use to dog owners, and recorded any adverse

Fig 1. Study design and structure.

https://doi.org/10.1371/journal.pntd.0007767.g001
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reactions and reasons for collar losses. Scalibor collars have an activity period of 5–6 months

against sand flies according to the product label, though longer durations of>10 months are

experimentally demonstrated[35–37]. Collars were routinely replaced on 5 occasions at an

average interval of 182 (S.D. 12.1) days (S2 Table).

Control arm. All dogs in control clusters received a placebo collar at recruitment, houses

received an identical lure dispenser containing no pheromone, and chicken roosting sites

were sprayed with water. For logistic reasons, spraying was limited to two rounds, at baseline

and 368 days later (S2 Table). New eligible dogs were fitted with a placebo collar as described;

losses of placebo collars or lures were replaced at subsequent dog recruitment rounds

(S1 Table).

Blood sampling and sampling regime

Peripheral blood was collected from dogs by veterinarians by venepuncture onto two replicate

Whatman 3MM Chromatography papers (GE Healthcare, 3030–614), which were then dried

at ambient temperature, labelled, placed in individual zip plastic bags containing silica gel

(Geejay Chemicals), and stored at 4˚C until processing. Sera eluted from the filter papers were

tested for anti-Leishmania antibodies by ELISA. Up to 5mls of blood was also collected into

EDTA tubes to harvest leukocytes for molecular detection of L. infantum parasites by quantita-

tive PCR (qPCR). The laboratory procedures are described in the Supplementary Information

file S1 Text.

At baseline, veterinarians scored dogs for eight (non-specific) signs of canine leishmaniasis:

alopecia, dermatitis, hyperkeratitis, skin lesions, conjunctivitis, onychogryphosis (excessive

nail growth), lunettes, uveitis, and lymphadenopathy (enlarged popliteal lymph nodes). Each

sign was scored on a semi-quantitative scale from 0 (absent) to 3 (severe), or 0 to 2 (for ony-

chogryphosis and hyperkeratitis). Scores were then summed to give an overall clinical severity

score.

Canine blood samples were collected at baseline to identify potential recruits. Recruited

dogs were then sampled and tested again at their final follow-up.

Trial outcome measures

The primary outcome measure was cluster-level cumulative seroconversion incidence in naïve

dogs in each intervention arm compared to in the control arm. The secondary canine outcome

measures were L. infantum parasitological infection incidence, and changes in blood parasite

loads (L. infantum genome equivalents per ml blood buffy coat), confirmed by specific qPCR.

The third outcome measure was relative changes in cluster-level household counts of Lu. longi-
palpis measured by setting CDC miniature light traps as described below.

Canine clinical condition is not considered a reliable marker of infection incidence follow-

ing others[38]; signs of canine leishmaniasis are non-specific, thus positive diagnosis requires

extensive differential diagnosis, and statistical power was insufficient in this study to rely on

changes in advanced canine VL disease.

Sand fly catches

After the final canine follow-up sample in October 2015, the trial interventions as described

above were continued for an additional 7 months until the end of May 2016 to facilitate

entomological follow-up. Sand fly sampling was conducted in 42 clusters in 6 approximate

quarterly trapping rounds from January 2015 to May 2016 (January/February; April; July/

August; October/November in 2015; and January/February; and April/May in 2016). Data

from 2 clusters were incomplete and thus excluded from the analyses. The final dataset was
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generated from 209, 188 and 193 (n = 590) trapping nights in 129, 121 and 113 (n = 363)

houses, in 14, 13, and 13 control, pheromone + insecticide and collar intervention clusters,

respectively.

Miniature CDC light traps with the light bulb removed were positioned in three locations

per household: inside the house preferably in the main bedroom; at the dog sleeping site or

kennel entrance; and at the principal chicken roosting site. Each trap was thus associated with

the respective host: humans, dogs and chickens. Captured sand flies were sexed and counted

under a stereomicroscope. Specific identification was not performed as the vast majority

(>98%) of peridomestic sand flies captured in the study region during past and contemporary

entomological studies, were confirmed to be Lu. longipalpis by dissection of spermathecae[39,

40].

Data collection

Veterinary staff collected details of the dog’s history, and information on any newly acquired

dogs, host numbers, and losses of dogs, collars and pheromone lures, by verbal questionnaire

to household heads by house-to-house visitation and/or by active telephone contact at least

every 3 months.

Sample size calculations

The sample size was calculated for the primary outcome measure (canine seroconversion inci-

dence) for a two-treatment randomised control trial[41, 42], whereby cluster-level outcomes

in collar and in pheromone treated clusters were each compared to the outcomes in the control

clusters.

The trial was statistically powered to detect a 50% reduction in L. infantum seroconversion

incidence in naïve dogs after 24 months follow-up with a baseline canine instantaneous annual

incidence of 0.6, estimated from canine testing between 2006–2008 in the region (SUCEN,

unpublished data) (see Table 1). Calculations were based on a surveyed harmonic mean of 24

dogs per cluster (assuming 1 negative dog recruit per household), with equal numbers of

Table 1. Serological infection estimates calculated for dogs surveyed prior to trial recruitment, and from canine historical testing records in the same region.

Sample period Population sample Force of Infection (FOI) 1 Sero-prevalence2 (pos/n dogs)

λ
incidence/year (SD), N dogs

ρ recovery/year (SD)

2012–2014a Control arm 1.14 (0.163), 1,558 1.48 (0.264) 0.610 (961/1575)

Pheromone arm 1.47 (0.225), 1,693 1.82 (0.335) 0.584 (994/1702)

Collar arm 1.14 (0.159), 1,631 1.52 (0.265) 0.619 (1016/1641)

Trial arms combined 1.26 (0.151), 4,882 1.64 (0.235) 0.604 (2,971/4,918)

2006–2008b 19 regional towns 0.61 (0.094), 2,304 0.63 (0.121) 0.422 (972/2,304)

2006–2008c 20 regional towns 0.451 (4592/10,186)

1 FOI estimates were calculated from fitting age-seroprevalence data to an incidence (λ)-recovery (ρ) model.
2 Crude seroprevalences estimated including dogs without age records.
a estimates calculated from dogs pre-recruitment resident in the 14 towns (= trial clusters) per intervention arm to which they were subsequently randomly allocated;

serological infection detected using the ELISA described in this study.
b FOI estimates calculated from canine samples accompanied by dog age data; serological infection detected using an ELISA kit (EIE-CVL, Bio Manguinhos/Fiocruz-

RG, Brazil)
c estimates for the same regional population as in (b) but including also test data without dog age records.

https://doi.org/10.1371/journal.pntd.0007767.t001
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clusters per arm, and coefficient of variation between clusters κm = 0.40. The latter value was

more conservative than κm = 0.34 estimated from the variation in cluster-level canine sero-

prevalences (1,701 dogs tested in 42 clusters) at initial trial recruitment. Under these design

conditions, 12 clusters per arm were required per intervention arm to achieve a statistical

power of 90% with 95% confidence to reject the null hypothesis.

To buffer effects of potential loss-to-follow-up (LTF) of clusters and dogs, the number of

clusters enrolled was increased to 14 clusters per arm. By the end of the trial no LTF of clusters

occurred, though substantial LTF of dogs and houses occurred (see Results). Recalculations at

the end of the study, revealed a harmonic mean of 35 dogs followed-up for an average 16.4

months per cluster, with a starting instantaneous incidence of 1.26 year-1 measured from age-

prevalence data in all recruited dogs prior to being under intervention (Table 1). From these

data, the trial design provided 90% statistical power to detect an equivalent 44% reduction in

infection incidence between trial arms.

Statistical analysis

Analysis of the intervention effect on seroconversion and parasite detection incidence were

computed using mixed effects binomial complimentary log–log models expressed as incident

risk ratios (IRR). Random intercepts for trial clusters were fitted (trial cluster being the higher

level of structuring in the data[43]), and log10 normalised days under intervention set as the

model offset. Similarly, negative binomial mixed effects models were used to test the interven-

tion effects on log10 +1 transformed Leishmania parasite loads (ml-1), and on sand fly

numbers.

Complimentary log–log model fits were achieved by Gauss–Hermite numerical adaptive

quadrature of the random-effects estimators (quadchk routine in STATA), validated using 16

integration points in model run comparisons to confirm quadrature fitting accuracy; model

runs showed�0.01% variation in resulting estimates, and were thus considered to be reliable

[44].

To measure the effects on canine infection outcomes, models comprised variables describ-

ing the trial structure, and variables included a priori on the basis that they could affect the

trial balance. These were strata (3-levels), baseline canine exposure (baseline anti-Leishmania
antibody titre), proportion of time (days) under intervention in the bimodally high (Decem-

ber-May) (cf. low June -November) sand fly season[45], and household mean numbers of dogs

and chickens as surrogates of host odour intensity that may invoke a density-dependent or

competing attractant[20, 31, 46].

For analyses of sand fly data, a priori covariates included strata, sand fly trapping period (6

levels) reflecting sand fly seasonality, and host abundance at the time of trapping i.e. numbers

of people, dogs and chickens associated with each of the 3 trapping locations per household.

The model incorporated a cluster term for trial clusters.

The outcomes from these models were considered “unadjusted” effect estimates. Unad-

justed estimates were then adjusted on detection of significant model improvement by in-

dividual inclusion of additional demographic variables in the model, namely, predominant

chicken roosting site category (described above); month and sand fly season (as above) of dog

recruitment; dog age at recruitment (median: 24mo.; IQR: 8-48mo.); dog sex; property type

(house or small holding) clinical condition score of dog at recruitment (median: 3.1; IQR:

2–4)). Each variable was evaluated for significance by log–likelihood ratio test (LRT) of nested

models.

In a secondary analysis, the outcome × strata (3-level) interaction term was tested against

the full model to evaluate differential intervention effects between trial strata. In the case that
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the interaction term was significant with�90% probability, individual strata-level effect esti-

mates were further investigated.

The equality of variances in cluster-level dog follow-up time (days) was tested using the

Levene’s robust test statistic adapted by Brown & Forsythe[47] to provide robust estimators of

central tendency (median [W50] and 10% trimmed mean [W10]).

Data were analysed in STATA v.15 (StataCorp LP, College Station, TX).

Force of infection estimation

The instantaneous incidence (force of infection, FOI) was calculated for dogs serologically

tested prior to trial recruitment, by fitting the age-prevalence data to a standard age-incidence-

recovery model[48, 49].

To evaluate changes in infection rates from 6–8 years earlier, the FOI was similarly calcu-

lated using historical data with age records for 2,304 dogs resident in 19 towns in the same

region, sampled in 2006–2008 (SUCEN, unpublished data). Positives were identified on detec-

tion of “L. major-like” promastigote soluble antigens[50] by an ELISA-based kit (EIE-leishma-

niose-visceral-canina-Bio-Manguinhos [EIE-LVC], Bio-Manguinhos/Fiocruz- RJ, Brazil).

Seroprevalence in the same historical populations was estimated by inclusion of an additional

7,882 dog results that did not have age records (n = 10,186 dogs in total) (see Table 1).

Data management and masking

Diagnostic results and household questionnaire data were entered into data-checking entry

forms designed in ACCESS 2007 relational database by a trained technician, and databases

then checked for inconsistencies. Unblinding for final analysis was conducted independently

after all dogs had been tested by laboratory staff who were blinded to the cluster treatments

and to cluster and household identities through a bar-coding system; all tested sample tubes

were bar-coded and results subsequently matched to dog ID bar-codes in the database.

Ethical considerations

The trial protocols for dogs were approved by the Committee for Ethical Use of Animals

(CEUA [FOA-00124-2013]), UNESP, Brazil, and the Animal Welfare and Ethical Approval

Body (AWERB, [48723]), University of Warwick, UK. Household questionnaire designs were

approval by the Biomedical and Scientific Research Ethics Committee (BSREC, [REGO-2015-

1388]), University of Warwick, UK. Informed written consent was obtained from dog owners

to sample and fit collars to their dogs, and from the town and district health authorities to con-

duct the study within their administrative jurisdiction.

Results

Pre-enrolment canine infection estimates

A total 4,918 dogs were serologically tested prior to trial recruitment, of which 2,971 dogs

(60%) were seropositive (Table 2). Seroprevalence and FOI estimates were similar between

dogs in the three trial arms to which they were subsequently allocated (Table 1; Fig 2). No sta-

tistical differences were detected in these infection measures between the trial arms, account-

ing for the trial structure, date of recruitment, dog age and trial cluster (mecloglog mixed

effects model: z<0.89, P>0.38). Notably these pre-intervention infection rates were higher

than equivalent estimates calculated from canine serosurvey records in the same region con-

ducted a number of years previously (Table 1; Fig 2).

Cluster randomised trial against leishmaniasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007767 October 25, 2019 10 / 25

https://doi.org/10.1371/journal.pntd.0007767


Dog recruitment and follow-up

The initial enrolment included 630 seronegative dogs under intervention by July-November

2012 (S1 Table). New dogs and houses were recruited between November 2012 and October

2014 (S1 Table). This resulted in a total 2,971 seronegative dogs recruited and placed under the

trial interventions, of which, 1,454 (48.9%) dogs, resident in 789 houses across the 42 trial clus-

ters, remained in the study for follow-up testing (Table 2). A median 1 (95% C.I.: 1, 2)

Table 2. Summary of the total dogs sampled, recruited and with follow-up sample, according to the trial intervention arm to which the dogs were subsequently

allocated.

Intervention

arm

Dogs initially sampled for potential

recruitment

Seronegative dogs recruited (proportion of

sampled)

Negative dogs with follow-up sample (proportion of

recruits)

Control 1,575 961 (0.610) 455 (0.473)

Pheromone 1,702 994 (0.584) 480 (0.483)

Collar 1,641 1,016 (0.619) 519 (0.411)

Total 4,918 2,971 (0.604) 1,454 (0.489)

https://doi.org/10.1371/journal.pntd.0007767.t002

Fig 2. Canine age-seroprevalence data (symbols) fitted to an incidence-recovery model to provide the best fit (lines) from which

annual FOI (incidence λ and recovery ρ) were estimated (results shown in Table 1). Data include 4,882 resident dogs in 42 trial clusters

sampled prior to recruitment, categorised here according to the intervention arm to which the clusters were subsequently randomised:

pheromone (□, ----, n = 1693), collar (�, ������, n = 1631), and control (�, - - -n = 1558) arm. Data also shown for 2,304 dogs resident in 19

towns in the same region sampled in 2006–2008 (4, solid line).

https://doi.org/10.1371/journal.pntd.0007767.g002
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seronegative dogs was enrolled per house which did not differ between treatment arms (Pois-

son: z<0.34, P>0.16).

The follow-up cluster population was observed for a per capita median 17.1 (95% C.I.s:

15.2, 17.7, n = 455 dogs), 14.7 (95% C.I.s: 14.0, 16.7, n = 480), and 15.2 (95% C.I.s: 13.2, 15.5,

n = 519) months under control, pheromone and collar interventions, respectively (S3 Table).

Similar fractions of the follow-up times (0.507, 0.454 and 0.416) fell within the seasonally high

period of sand fly abundance (December to May) (LRT: χ2
(2) = 1.08, P = 0�58). The variance in

cluster-level dog follow-up days were not dissimilar between intervention arms (Levene’s W10

[df: 2,39] = 1.78, P = 0.838; W50 [df: 2,39] = 1.60, P = 0.853). The epidemiological data for the

three intervention arms (Tables 1 and 2; Fig 2), indicated that the randomization process

achieved good trial balance.

Intervention outcomes

Seroconversion incidence. Of the seronegative recruits, 225 (49.5%), 217 (45.2%), and

182 (35.1%) in control, pheromone and collar arms respectively, seroconverted by the end of

the study. The annual cluster seroconversion incidence varied between the three trial strata

within intervention arms (Fig 3; S3 Table).

Accounting for the variables describing the trial structure and follow-up intervals, the

unadjusted seroconversion incident risk ratio (IRR) was 0�88 (95% C.I. 0.66, 1.16) in the pher-

omone arm, and IRR = 0.65 (95% C.I. 0.48, 0.87) in the collar arm, each compared to the con-

trol arm (model fit: Wald χ2
(8) = 31�4, P<0.0001) (Table 3).

Potential adjustment to these estimates was assessed by inclusion of additional demo-

graphic variables in the model. Only one significant covariate was identified: the location of

the chicken principal roosting site i.e. where the synthetic pheromone + insecticide were co-

located (LRT: χ2
(3) = 9�57, P = 0�023). This led to slight modifications of the effect estimates,

Fig 3. Mean annual incidence (+/- SD) of seroconversion (grey bars) and confirmed parasitological infection (black bars), between trial strata

(ID’s 1 to 3) within control, pheromone and collar intervention arms.

https://doi.org/10.1371/journal.pntd.0007767.g003
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indicating protection against seroconversion attributed to the pheromone and collar interven-

tions of 13% (95% C.I. 0%, 34.0%), and 36% (95% C.I. 14.4%, 51.8%), respectively (Table 3).

Insecticide treatment of the two most common roosting site categories, low trees (53%),

and chicken shelters (33%), were not dissimilar in intervention effect; the significant modifica-

tion was associated with the third roosting site category, most commonly hollows in the

ground, but which represented only 7% of all roost sites. In the latter case insecticide was

sprayed on the nearest wall.

Neither intervention resulted in significant changes in the mean log10 anti-Leishmania anti-

body units in seroconverted dogs (z<1.45, P>0.10).

In a secondary analysis, potential differences in the intervention effects on seroconversion

incidence between trial strata were examined. This provided evidence of strata-level variation

(strata × treatment interactions, LRT test: χ2
(4) = 8.34, P = 0.078), observed only in the phero-

mone arm, suggesting a negative impact in Aracatuba city (stratum 3, n = 3 clusters)

(IRR = 1.66 [95% C.I.s: 0.971, 2.849], P = 0.064) (pheromone arm × stratum 3 interaction:

z = 2.36, P = 0.018). In contrast, the pheromone effects in strata 1 and 2 (n = 11 town clusters)

suggested a protective effect of 27% (95% C.I.s: 0.02%, 46.8%) (IRR = 0.73 [0.532, 0.998],

P = 0.048).

Parasitology. Buffy coat samples from 775 recruited dogs at follow-up were tested for the

presence of Leishmania kDNA in peripheral blood by qPCR (Table 4). Parasites were detected

in 117 (15.1%) of dogs overall; including 20.8% (64/308) of dogs that seroconverted, and 11.4%

(53/467) of dogs that did not, by follow-up sample. The latter category of dogs was neither dif-

ferentially associated with the date or season of recruitment, or their log10 follow-up time

(fully adjusted model: z>0.049, P>0.23), to suggest a predominance of prepatent dogs in the

recruited sample.

The percent reduction in the crude number of parasite positive dogs attributed to phero-

mone and collar interventions at follow-up were 43.3% and 26.1%, respectively (Table 4).

Accounting for the trial structure, follow-up periods and covariates in analyses as described

above, the levels of protection against confirmed Leishmania infection incidence were 51.5%

Table 3. Seroconversion incident rate ratio (IRR) amongst dogs under each intervention: unadjusted and adjusted estimates calculated relative to the control arm,

by fitting to mixed-effect complimentary log-log models.

Intervention Unadjusted IRR

(95% C.I.s)

N dogs Adjusted1 IRR

(95% C.I.s)

N dogs

Pheromone 0.88 (0.662, 1.159), P = 0.353 1,443 0.87 (0.660, 1.152) P = 0.320 1,322

Collar 0.65 (0.482, 0.868) P = 0.004 1,443 0.64 (0.482, 0.856) P = 0.003 1,322

1 effect modification adjusted by variables significant by LRT: chicken predominant roosting site where pheromone and insecticide were co-located.

https://doi.org/10.1371/journal.pntd.0007767.t003

Table 4. Confirmed Leishmania infection incidence, tissue parasite loads, and intervention effects in recruited dogs at follow-up.

Intervention arm qPCR1 positive/dogs tested (%) parasite infection incidence

IRR (95% C.I.s)

geometric mean2 (95% C.I.) parasite load ml-1 parasite load ml-1

IRR (95% C.I.s)

control 48/231 (20.8) referent 18.6 (7.18–47.96) referent

pheromone 25/246 (10.2) 0�485 (0�251, 0�938) P = 0.032 6.48 (0.85–49.35) 0�469 (0�233, 0�946) P = 0.034

collars 44/298(14.8) 0�775 (0�425, 1�141) P = 0.404 4.82 (1.72–13.54) 0�524 (0�266, 1�03) P = 0.062

Total 117/775 (15.1)

1 quantification of Leishmania kDNA in canine peripheral blood leukocytes per ml-1 by qPCR, standardised to the endogenous control.
2 GM calculated in 117 positive dogs with qPCR counts

https://doi.org/10.1371/journal.pntd.0007767.t004
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(95% C.I. 6.2%, 74�9%) and 22.5% (95% C.I. 0%, 57�5%), respectively (Table 4). The interven-

tion outcomes did not significantly vary between strata (test of treatment × strata interaction

term: LRT: χ2
(4) = 4.10, P = 0�393), nor were effect modifications significant by inclusion of

additional demographic variables (LRT: χ2
(1–3) <2.68, P>0�444).

Leishmania parasite loads. The geometric mean Leishmania parasite loads per ml-1 in the

117 qPCR positive dogs were highly variable and over-dispersed (Table 4). Relative to control

clusters, the pheromone intervention reduced parasite loads by an average 53.1% (95% C.I.

5.4%, 76.7%), and the collar arm by an average 47.6% (95% C.I. 0%, 73.4%) (Table 4). The

intervention effects did not significantly vary between strata (test of treatment × strata interac-

tion term: LRT: χ2
(4) = 0.02, p = 0.905), nor were reductions in parasite loads related to the

number of days under intervention (LRT: χ2
(4) = 0.39, P = 0.532), or modified by inclusion of

additional demographic variables (LRT: χ2
(1–3) <0.21, P>0�967).

For the 308 dogs that seroconverted with parasite counts, the log10 parasite loads were not

correlated with corresponding log10 IgG antibody units (Spearman’s r = 0�074, P = 0.20); simi-

lar non-significant patterns were observed across treatment arms. The annual incidence of

confirmed parasitological infection and seroconversion post intervention were also not corre-

lated (Fig 4).

Sand fly abundance

Complete sand fly trapping records were available for 590 trap nights in 363 houses in 40 trial

clusters (S4 Table). The number of trap nights (trapping effort) were similar between interven-

tion arms (t<1.33, P>0.19) and between trial strata (t<1.57, P>0.124). Relatively few Lu.

Fig 4. Association between annual incidence estimates of confirmed parasite infection and seroconversion at follow-up

in control (�) collar (4) and pheromone (□) intervention clusters.

https://doi.org/10.1371/journal.pntd.0007767.g004
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longipalpis were captured per house, and only 46% of houses were positive for sand fly capture;

which was similar under each intervention (S4 Table).

The pheromone intervention significantly reduced the numbers of female and male sand

flies captured at households relative to controls, whereas the collar intervention tended to

reduce only the number of females (Table 5). No consistent differences in sand fly captures

were observed between the trial strata (test of intervention arm × strata interaction term:

z<1.15, P>0.248). Inclusion of additional demographic variables did not significantly modify

these effect estimates.

Changes in the distribution of vectors at households

Changes in sand fly numbers in CDC traps placed at human, dog and chicken sleeping sites

were further examined. In placebo clusters, the majority of Lu. longipalpis were captured at

chicken sleeping sites, with fewer but similar numbers associated with dog sleeping sites, and

humans (i.e. inside houses) (Table 6).

In the pheromone arm, reductions of 66% (95% C.I. 36%, 81.7%) and 69% (95% C.I. 43.6%,

82.6%) were observed in female and male sand flies captured at the chicken roosting site,

being the site of pheromone + insecticide co-location (Table 7). In the collar arm, there was a

mean 52% (95% C.I. 0%, 87.9%) reduction in female sand flies at dog trapping sites attributed

to collars, although this narrowly failed to reach statistical significance (Table 7). These reduc-

tions were not mirrored by significant changes in sand fly numbers at the corresponding alter-

native trap locations (Table 7).

Males made up the majority of captures which was not unexpected (Table 6). The number

of female sand flies was positively associated with the number of male flies in the same trap

Table 5. Intervention effects1 on household numbers of male and female Lu. longipalpis sand flies captured across

3 CDC lights traps per house.

Treatment arm Females

IRR (95% C.I.s)

Males

IRR (95% C.I.s)

Pheromone 0.51 (0.287, 0.918) P = 0.03 0.44 (0.200, 0.974) P = 0.04

Collar 0.57 (0.321, 1.007) P = 0.05 0.94 (0.460, 1.918) P = 0.86

1 estimated from negative binomial mixed effects models including a priori predictors.

https://doi.org/10.1371/journal.pntd.0007767.t005

Table 6. Distribution of household Lu. longipalpis captured in CDC light traps1 located in associated with important blood-source hosts.

Sand

flies

Arm No. on people (proportion of

treatment total)

No. on dogs (proportion of treatment

total)

No. on chickens (proportion of

treatment total)

Total sand

flies

Females Control 34 (0.23) 43 (0.29) 72 (0.48) 149

Pheromone 20 (0.26) 28 (0.37) 28 (0.37) 76

Collar 19 (0.22) 17 (0.20) 49 (0.58) 85

Males Control 45 (0.16) 52 (0.18) 188 (0.66) 285

Pheromone 31 (0.25) 46 (0.37) 46 (0.37) 123

Collar 47 (0.15) 37 (0.12) 228 (0.73) 312

All Control 79 (0.18) 95 (0.22) 260 (0.60) 434

Pheromone 51 (0.26) 74 (0.37) 74 (0.37) 199

Collar 66 (0.17) 54 (0.14) 277 (0.70) 397

1 In each household, CDC light traps (excluding the bulb) was set inside the house (humans), and outside the house above the sleeping dog, and at the main chicken

roosting site.

https://doi.org/10.1371/journal.pntd.0007767.t006
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(z = 7.24, P<0.0001), but not with the prevailing mean numbers of household chickens or

dogs (z<0.49, P>0.26). This relationship was not dissimilar across intervention arms (test of

intervention arm × male fly number interaction term: z<0.197, P>0.53).

Comparison of the synthetic pheromone versus collar intervention effects

Direct statistical comparisons of the pheromone versus collar intervention outcomes (i.e. not

compared to the control arm), did not provide evidence of substantial differences between the

two interventions. Only in analysis of seroconversion incidence did collars provide an appar-

ent 25.3% (95% C. I.s: 1.2%, 43.4%) additional protection over the pheromone intervention

(IRR = 0.747 [95% C.I. 0.566, 0.988], P = 0.041). And the pheromone intervention resulted in a

49% (95% C.I. 11%, 66.4%) greater reduction in male Lu. longipalpis at households compared

to in the collar arm (IRR = 0.51 [95% C.I. 0.336, 0.790], P = 0.002). Otherwise, no other statisti-

cal differences were detected.

Discussion

The synthetic pheromone intervention reduced the incidence of confirmatory parasitological

infection by 52%, and the geometric mean peripheral blood parasite loads by 53%. The same

intervention also reduced the household numbers of female Lu. longipalpis by 49%. These

promising outcomes were not mirrored in changes in seroconversion incidence across all trial

strata. In the 11 semi-urban town clusters (strata 1 & 2) under this intervention, seroconver-

sion was reduced by an average 27%, whereas on testing the three clusters in Araçatuba city

(stratum 3), seroconversion incidence was increased rather than decreased. The latter result

on further inspection was specifically attributed to a single Araçatuba treated cluster, in which

the annual seroconversion incidence was 0.0274, which was 2.2× the average (0.0126/year) for

the three Araçatuba control clusters. The equivalent rates in the other two pheromone-treated

clusters (0.0142 and 0.0139/year) were similar to that of controls (S3 Table). Compliance to the

synthetic pheromone intervention may have been lower in stratum 3, but we did not detect

significant differences (P>0.05) in the per lure loss rates between the three strata (range:

0.074–0.107, χ2
(2) = 5.81), or per collar loss rates (0.156–0.168, χ2

(2) = 1.16), LTF of recruited

dogs (0.527–0.569, χ2
(2) = 2.9), or the dog recruitment : LTF ratios (0.08–1.28, χ2

(2) = 3.33). All

existing and lost lures were replaced at 3 monthly intervals. There was no further evidence of

significant variation in intervention effects between strata in either the pheromone or collar

arm. By design, all nine clusters recruited within the regional capital Araçatuba, were assigned

to a separate stratum based on the perceived enhanced ZVL control activities and conditions

in the city[33].

Table 7. Intervention effects on Lu. longipalpis abundance at host-associated CDC trap sites.

Capture site Humans

IRR (95% C. I.s)

Dogs

IRR (95% C. I.s)

Chickens

IRR (95% C. I.s)

Female sand flies Pheromone 0.72 (0.285,1.814) P = 0.49 0.71

(0.385, 1.304) P = 0.27

0.34

(0.183, 0.640) P = 0.001

Collar 0.55

(0.268, 1.115) P = 0.10

0.48

(0.221, 1.052) P = 0.07

0.58

(0.296, 1.152) P = 0.12

Male sand flies Pheromone 1.12

(0.451, 2.758) P = 0.81

0.80

(0.329, 1.950) P = 0.62

0.31

(0.174, 0.564) P = 0.001

Collar 0.93

(0.446, 1.957) P = 0.86

0.76

(0.347, 1.641) P = 0.48

1.15

(0.564, 2.447) P = 0.71

https://doi.org/10.1371/journal.pntd.0007767.t007
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Collars

In contrast, the deltamethrin-impregnated collar intervention reduced canine seroconversion

incidence by 36% (95% C.I. 14.4%, 51.8%). The attributable reductions in tissue parasite loads

of 48% (95% C.I. 0%, 73.4%), and in household female sand flies of 43% (95% C.I. 0%, 67.9%),

were indicative, though failed to reach statistical significance (P<0.062).

These results were somewhat surprising as the collective studies of Scalibor collars in Brazil

[51–55], Europe[56–59], North Africa[60], and central Asia[61] to date, demonstrate their

unquestionable impact on L. infantum transmission, providing a median 56% (IQR: 48.9%-

85.9%; range: 46.9%-100%) protection against canine seroconversion incidence. Moreover,

community-wide collar interventions provided 43%-50% protection against human serocon-

version and clinical ZVL incidence[61, 62], in addition to reductions in Lu. longipalpis house-

hold abundance[63], and in Lu. longipalpis infection rates with L. infantum[51]. Thus, in the

current study, the collar intervention arm acted as a positive control for the previously

untested synthetic pheromone lure-and-kill method.

The overall protection provided by the collar arm appeared somewhat inferior to that of the

pheromone arm in this trial, when each was compared to the control arm. However, a consis-

tent difference in their performance was not detected by direct statistical comparison of the

two interventions effect outcome estimates.

Household sand fly distributions

In control households, the majority of sand flies were captured at chicken roosting sites com-

pared to dog sleeping sites and inside houses. The pheromone intervention diminished female

and male sand flies at chicken roosting sites by 49% and 56% respectively. The collar interven-

tion reduced female, but not male, Lu. longipalpis numbers at dog sleeping locations by 43%.

There was no evidence that sand flies were diverted from the treated trap sites to the two alter-

native untreated host trap sites within households. These results are consistent with the insecti-

cidal effects of the associated interventions, and the success of the purposeful co-location of

insecticide at chicken roosting sites. Possible imprecision in the effect estimates arises if the

synthetic pheromone recruited additional numbers of sand flies that circumvented traps e.g.

through insecticide-induced knockdown or excito-repellency. In this case, it is likely that effect

estimates reported here are an underestimate of the true intervention effect. Further experi-

ments are needed to quantify these mechanisms.

Implications for ZVL control

ZVL control guidelines in Brazil recommend IRS of houses, but also of animal shelters[11],

where the majority of Lu. longipalpis are typically captured[21, 22, 64]. Field studies in north

Brazil show sand fly numbers in animals shelters to decrease more or less immediately after

insecticide application, but, in parallel, with colonisation of nearby unsprayed sites e.g. house-

hold dining huts[65]. Evidenced by additional data[20], the authors of those studies proposed

that this shift in vector distribution is a partial consequence of insecticide-induced mortality of

male flies causing a decline in pheromone release and recruitment to treated sites. This might

increase the relative attractiveness of untreated colonised sites. Based on this rationale there-

fore, the co-location of synthetic pheromone should maintain sand fly recruitment to insecti-

cide-treated sites. Results supporting this hypothesis demonstrate that the synthetic

pheromone can “restore” female and male recruitment to recently sprayed sheds[25]. Indeed,

the synthetic pheromone lure tested in this study attracts approximately 24 times more Lu.

longipalpis to chicken sheds compared to sheds without synthetic pheromone[19]. This novel
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lure-and-kill approach offers a potential improvement to the standard IRS practise against

ZVL.

A single 10mg lure synthetic pheromone lure is active for 10–12 weeks[19], and attracts Lu.

longipalpis over distances of 30m in a single night, sufficient to cover the typical urban and

more rural household vicinity. The attraction of female Lu. longipalpis to synthetic pheromone

is dose-dependent[23], in line with density-dependent associations between female and male

Lu. longipalpis numbers observed in natural leks / CDC light trap catches (this study; [66, 67]).

Chickens are a dead-end (sink) host for Leishmania[10], and often the most abundant domes-

tic host in endemic regions[33], hence an obvious location to place the pheromone and insecti-

cide. However, the need for synergistic effects between the synthetic pheromone and host

odour to attract Lu. longipalpis[68] no longer appears critical as confirmed by on-going field

studies, thus opening the door for its wider deployment at households without animal hosts.

Community-wide experiments are now needed to optimise pheromone doses in different

demographic settings. Lu. longipalpis is a complex of at least four reproductively isolated sib-

ling species, the males of which each produce a different pheromone type[69–71]. The sibling

species that produces the (S)-9-methylgermacrene-B chemotype is widely distributed in Brazil,

and has a geographical range that extends from Argentina to Central America[34, 40, 72–74].

With respect to transmission dynamics, of particular relevance is the observed reductions

in tissue L. infantum parasite loads. This is expected to diminish the canine population’s infec-

tiousness to Lu. longipalpis. Canine skin, blood, and bone marrow L. infantum loads correlate

with the dogs’ ability to transmit L. infantum to Lu. longipalpis[38, 75–78]. Dogs with the high-

est parasite loads are responsible for the majority of transmission events[38, 76], though not

exclusively so[79]. Related to this is the proposal that variation in Leishmania metacyclic inoc-

ulum from sand fly bites contribute to an individual host’s infection pathology, and subse-

quent onward transmission potential[80, 81]. Our data indicated that Scalibor collars

effectively lowered the over-dispersion in canine population antibody responses to Lu. longi-
palpis salivary antigens delivered by sand fly bites, which is indicative of the level of biting

exposure. In simple terms, this predicts that a lower fraction of dogs would receive high den-

sity L. infantum challenge under the trialled intervention.

The FOI estimates suggest an increase in canine transmission from 2006–2008 to the trial

period (Table 1), which is supported by independent reports of the rise and spread of canine

infection, and Lu. longipalpis abundance, across São Paulo state[13, 16]. Together with current

upward trends in human ZVL burdens in Brazil[13–15], the need for sustainable vector con-

trol is clear. The MoH policy of culling seropositive dogs continues to be unpopular amongst

dog owners[82], and in the Brazilian setting, dog collars, along with the registered canine vac-

cine Leish-Tec, and anti-Leishmania chemotherapy treatment options, may be too costly and/

or perceived insufficiently effective, to achieve community-level compliance[83, 84]. Scalibor

collar labels indicate 5–6 months effective duration, though collar losses from dogs are variably

high (range: 0.6–8.2% per month)[52, 54–57, 59, 61, 62], necessitating replacement, particu-

larly in regions of year-round transmission. In this trial, collar losses were 7.5% (95% C.I.: 6.5,

8.6) per month, compared to pheromone lure loss of 2.7% (95% C.I.: 0.26, 5.2) per month. On

bulk synthesis, the potential unit cost of a pheromone lure is likely to be substantially lower

than the cost of collars, vaccines or canine chemotherapeutic treatment.

Conclusions

Manipulation of vector behaviour is an often overlooked but important component of effective

vector control. The collective results of this study indicate a potential role of the lure-and-kill

approach to combat L. infantum transmission in Brazil. The protective effects were not
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dissimilar to those of the insecticide-impregnated collars, although the confidence intervals

around all effect estimates were broad. Notwithstanding, it is reasonable to consider that

robustly designed deployment of the lure-and-kill strategy could result in public and veteri-

nary health benefits similar to those globally reported for the Scalibor collars. In order to maxi-

mise the synthetic pheromone efficacy, complimentary studies are underway to inform best

practice for community-level deployment.
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