5 research outputs found

    Universality in two-dimensional Kardar-Parisi-Zhang growth

    Full text link
    We analyze simulations results of a model proposed for etching of a crystalline solid and results of other discrete models in the 2+1-dimensional Kardar-Parisi-Zhang (KPZ) class. In the steady states, the moments W_n of orders n=2,3,4 of the heights distribution are estimated. Results for the etching model, the ballistic deposition (BD) model and the temperature-dependent body-centered restricted solid-on-solid model (BCSOS) suggest the universality of the absolute value of the skewness S = W_3 / (W_2)^(3/2) and of the value of the kurtosis Q = W_4 / (W_2)^2 - 3. The sign of the skewness is the same of the parameter \lambda of the KPZ equation which represents the process in the continuum limit. The best numerical estimates, obtained from the etching model, are |S| = 0.26 +- 0.01 and Q = 0.134 +- 0.015. For this model, the roughness exponent \alpha = 0.383 +- 0.008 is obtained, accounting for a constant correction term (intrinsic width) in the scaling of the squared interface width. This value is slightly below previous estimates of extensive simulations and rules out the proposal of the exact value \alpha=2/5. The conclusion is supported by results for the ballistic deposition model. Independent estimates of the dynamical exponent and of the growth exponent are 1.605 <= z <= 1.64 and \beta = 0.229 +- 0.005, respectively, which are consistent with the relations \alpha + z = 2 and z = \alpha / \beta.Comment: 8 pages, 9 figures, to be published in Phys. Rev.

    Scaling of local interface width of statistical growth models

    Full text link
    We discuss the methods to calculate the roughness exponent alpha and the dynamic exponent z from the scaling properties of the local roughness, which is frequently used in the analysis of experimental data. Through numerical simulations, we studied the Family, the restricted solid-on-solid (RSOS), the Das Sarma-Tamborenea (DT) and the Wolf-Villain (WV) models in one- and two dimensional substrates, in order to compare different methods to obtain those exponents. The scaling at small length scales do not give reliable estimates of alpha, suggesting that the usual methods to estimate that exponent from experimental data may provide misleading conclusions concerning the universality classes of the growth processes. On the other hand, we propose a more efficient method to calculate the dynamic exponent z, based on the scaling of characteristic correlation lengths, which gives estimates in good agreement with the expected universality classes and indicates expected crossover behavior. Our results also provide evidence of Edwards-Wilkinson asymptotic behavior for the DT and the WV models in two-dimensional substrates.Comment: To appear in Surface Scienc

    Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering.

    Get PDF
    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g. during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with: hypotonic Tris buffer (HTB; 10mM Tris pH 8.0, 0.1% (w/v) EDTA, 10KIU aprotinin), 0.1% (w/v) SDS in HTB, two cycles of DNase and RNase, and sterilisation with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extra cellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96 % throughout all regions of the acellular tissue and no functional genes were detected using PCR. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labelling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular out flow tract reconstruction e.g. during the Ross procedure

    Opportunities and challenges for fish culture in Brazilian reservoirs: a review

    No full text
    corecore