187 research outputs found

    Phase Diversity For Speckle Reduction

    Get PDF
    B-mode ultrasound images are characterised by speckle artefact, which results from interference effects between returning echoes, and may make the interpretation of images difficult. Consequently, many methods have been developed to reduce this problematic feature. One widely used method, popular in both medical and non-destructive-testing applications, is a 1D method known as Split Spectrum Processing (SSP), or also as Frequency Diversity. Alhough this method was designed for speckle reduction applications, the final image experiences a resultant loss of resolution, impinging a trade-off between speckle reduction and resolution loss. In order to overcome this problem, we have developed a new method that is an extension of SSP to 2D data using directive filters, called Split Phase Processing (SPP). Instead of using ID narrow band-pass filters as in the SSP method, we use 2D directive filters to split the RF ultrasound image in a set of wide band images with different phases. The use of such filters substantially avoids the resolution loss usually associated with SSP for speckle reduction, because they effectively have the same bandwidth as the original image. It is concluded that the Split Phase Processing, as introduced here, provides a significant improvement over the conventional Split Spectrum Processing.5035414422Burckhardt, C.B., Speckle in ultrasound b-mode scans (1978) IEEE Trans. Sonics and Ultrasonics, 25 (1), pp. 1-6. , JanuaryChen, Y., Yin, R., Hynn, P., Broschat, S., Aggressive region growing for speckle reduction in ultrasound images (2003) Pattern Recognition Letters, 24 (4-5), pp. 677-691. , FebruaryGehlbach, S.M., (1983) Pulse Reflection Imaging and Acoustic Speckle, , Ph.D. dissertation, Stanford UniversityHealey, A.J., Leeman, S., Ferrari, L.A., Removing the ambiguity from single image speckle reduction techniques (1996) Acoustical Imaging, 22, pp. 145-150Li, P.C., Odonnell, M., Evaluational spatial compounding (1994) Ultrasonic Imaging, 16 (3), pp. 176-189Shankar, P.M., Newhouse, V.L., Speckle reduction with improved resolution in ultrasound images (1985) IEEE Trans. Sonics and Ultrasonics, 32 (4), pp. 537-543. , Jul

    Variational Principle underlying Scale Invariant Social Systems

    Get PDF
    MaxEnt's variational principle, in conjunction with Shannon's logarithmic information measure, yields only exponential functional forms in straightforward fashion. In this communication we show how to overcome this limitation via the incorporation, into the variational process, of suitable dynamical information. As a consequence, we are able to formulate a somewhat generalized Shannonian Maximum Entropy approach which provides a unifying "thermodynamic-like" explanation for the scale-invariant phenomena observed in social contexts, as city-population distributions. We confirm the MaxEnt predictions by means of numerical experiments with random walkers, and compare them with some empirical data

    Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis

    Get PDF
    Langerhans cell histiocytosis (LCH) is a disease that can involve one or multiple organ systems characterized by an accumulation of CD1a+ Langerhans-like cells as well as several other myeloid cell types. The precise origin and role of one of these populations, the multinucleated giant cell (MGC), in this disease remains unknown. This work shows that in three different lesional tissues, bone, skin, and lymph node, the MGCs expressed the characteristic osteoclast markers, tartrate-resistant acid phosphatase and vitronectin receptor, as well as the enzymes cathepsin K and matrix metalloproteinase-9. Although, in bone lesions, the osteoclast-like MGCs were only CD68+, in the nonostotic sites, they coexpressed CD1a. The presence of osteoclast-like MGCs may be explained by the production of osteoclast-inducing cytokines such as receptor activator of nuclear factor ÎșB ligand and macrophage colony-stimulating factor by both the CD1a+ LCH cells and T cells in these lesions. As osteoclast-derived enzymes play a major role in tissue destruction, the osteoclast-like nature of MGCs in all LCH lesions makes them a potential target for the treatment of this disease

    Environment Influence On Pspl-based Digital Dental Radiology Systems

    Get PDF
    Photo-stimulable phosphor luminescence technology (PSPL) has been used in Digora (Soredex, Finland) and Denoptix (CEDH Gendex, Italy) digital dental radiology imaging systems. PSPL plates store X-ray energy during exposition, being later processed by a laser reader and digitizer. Afterward they are erased and re-used. The large band of energy absorption provides PSPL systems with an extensive dynamic scale but at the same time a high sensibility to the incoming noise of environmental radiations. We have measured environment influences (electromagnetic radiation) for Digora and Denoptix plates after X-ray exposure and before digital processing. We have first compared the processing of PSPL plates "in dark" against "in light" environments. In another experiment, the exposed plates were also processed after being positioned 10 cm away from a 17 inches video monitor screen and to its laterals for 5, 10, 15, 20, 25 and 30 minutes (plates protected against light). The acquired images were used to calculate the noise power spectra (NPS) in each case. We have noticed that there was an increase in the noise spectra energy of "in light" processing compared to "in dark" processing. There was also an increment in the NPS energy when the images were processed after the exposition of the plates to the radiation emanated from video monitor.4320219226Huda, W., Comparison of a photostimulable phosphor system with film for dental radiology (1997) Oral Surgery Oral Medicine Oral Pathology, 84, pp. 725-731Brettle, D.S., The imaging performance of a storage phosphor system for dental radiography (1996) The British Journal of Radiology, 69, pp. 256-261Xinhua, A novel algorithm for measuring the MTF of a digital radiographic system with a CCD array detector (2000) SPIE, 3977, pp. 580-587KnĂŒpfer, W., Novel X-ray detectors for medical imaging (1999) Nuclear Physics, 78, pp. 610-615Hildebold, C.F., Dental photostimulable phosphor radiology (2000) Dental Clinics of North America, 44 (2), pp. 273-297Stamatakis, Dose response of a storage phosphor system for intraoral radiography (1999) Dentomaxillofacial Radiology, 28, pp. 272-276Yoshiura, K., Physical evaluation of a system for direct digital intra-oral radiography based on a charged-coupled device (1999) Dentomaxillofacial Radiology, 28, pp. 277-283Workman, A., Brettle, D.S., Physical performance measures of radiographic imaging systems (1997) Dentomaxillofacial Radiology, 26, pp. 139-146Granfors, P.R., Performance characteristics of an amorphous silicon flat panel X-ray imaging detector (1999) SPIE, 3659, pp. 480-490Yoshiura, K., Physical evaluation of a system for direct digital intra-oral radiography based on a charged-coupled device (1999) Dentomaxillofacial Radiology, 28, pp. 277-283Kengyelics, S.M., Image quality evaluation of a direct digital radiology detector operating in a UK radiology department (1999) SPIE, 3659, pp. 24-35Granfords, P.R., Aufrichtig, P.R.R., DQE(f) of an amorphous silicon flat panel X-ray detector: Detector parameter influences and measurement methodology (2000) SPIE, 3977, pp. 2-13Dobbins III, J.T., DQE(f) of four generations of computed radiography devices (1995) Medical Physics, 22, pp. 1581-1593Cowen, A.R., Workman, A., A physical image quality evaluation of a digital spot flurography system (1992) Phys. Med. Biol., 37, pp. 325-342Daint, J.C., Shaw, R., (1976) Image Science - Principles, Analyses and Evaluation of Photographic-Type Imaging Process, , Academic Press, London, UKBethea, R.M., Duran, B.S., Benllion, T.L., (1995) Statistical Methods for Engineers and Scientists, , Mc Hill Reckker, New York, NYZanella, G., Zannoni, R., DQE of imaging detectors in terms of spatial frequency (1999) Nuclear Instruments and Methods Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 437, pp. 163-167Zanella, G., Zannoni, R., The role of the quantum efficiency on the DQE of an imaging detector (1996) Nuclear Instruments and Methods in Physics Research A, 381, pp. 157-160Costa, S., DQE measurement in a scintillating glass optical fiber detector for X-ray imaging (1996) Nuclear Instruments and Methods in Physics Research A, 380, pp. 568-571Meyer, R.R., Experimental characterization of CCD cameras for HREM at 300kV (2000) Ultramicroscopy, 85, pp. 9-13Onttonello, P., MTF and DQE measurement in imaging detectors by their single-event response (1998) Nuclear Instruments and Methods in Physics Research Section A, 419, pp. 731-735Kandarakis, I., An experimental method for the determination of spatial-frequency-dependent detective quantum efficiency (DQE) of scintillators used in X-ray imaging detectors (1997) Nuclear Instruments and Methods in Physics Research Section A, 399, pp. 335-34

    Pulsed Direct And Constant Direct Currents In The Pilocarpine Iontophoresis Sweat Chloride Test

    Get PDF
    Background: The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Methods: Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. Results: 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). Conclusions: The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal stimulation time and sweat collection were, respectively, 10 and 30 min.141Di Sant'S Agnese, P.A., Darling, R.C., Perara, G.A., Shea, E., Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas (1953) Am J Dis Child, 86, pp. 618-619Gibson, L.E., Cooke, R.E., A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis (1959) Pediatrics, 23, pp. 545-549Taylor, C.J., Hardcastle, J., Southern, K.W., Physiological measurements confirming the diagnosis of cystic fibrosis. The sweat test and measurements of transepithelial potential difference (2009) Paedia Resp Rev, 10, pp. 220-226Rosenstein, B.J., What is a cystic fibrosis diagnosis? (1998) Clin Chest Med, 19, pp. 423-441Rowe, S.M., Miller, S., Sorscher, E.J., Cystic fibrosis (2005) N Engl J Med, 352, pp. 1992-2001Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation Consensus Report (2008) J Pediatr, 153, pp. S4-e14Castellani, C., Southern, K.W., Brownlee, K., DankertRoelse, J., Duff, A., Farrell, M., Mehta, A., Elborn, S., European best practice guidelines for cystic fibrosis neonatal screening (2009) J Cystic Fibrosis, 8, pp. 153-173Quinton, P.M., Cystic fibrosis: lesson from the sweat gland (2007) Physiology (Bethesda), 22, pp. 212-225Quinton, P.M., Chloride impermeability in cystic fibrosis (1983) Nature, 301, pp. 421-422Collie, J.T.B., Massie, R.J., Jones, O.A.H., LeGrys, V.A., Greaves, R.F., Sixty-Five Years Since the New York Heat Wave: Advances in Sweat Testing for Cystic Fibrosis (2014) Pediatr Pulmonol, 49, pp. 106-117Legrys, V.A., Sweat testing for the diagnosis of cystic fibrosis. Practical considerations (1996) J Pedia, 129, pp. 892-897Gonçalves, A.C., Marson, F.A.L., Mendonça, R.M.H., Ribeiro, J.D., Ribeiro, A.F., Paschoal, I.A., Levy, C.E., Saliva as a potential tool for cystic fibrosisdiagnosis (2013) Diagn Pathol, 8, p. 46Webster, H.L., A clinical appraisal of cystic fibrosis sweat-testing guidelines (2001) Am Clin Lab, 20, pp. 39-42Hammond, K.B., Nelson, L., Gibson, L.E., Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis (1994) J Pediatr, 124, pp. 255-260Portaria N° 288, 21 de Março de 2013. Diårio oficial da união, Brasília, N° 56 - DOU - 22/03/13 - seção 1 , p. 47. , ftp://ftp.saude.sp.gov.br/ftpsessp/bibliote/informe_eletronico/2013/iels.mar.13/Iels55/U_PT-MS-SAS-288_210313.pdf, BrasilNumajiri, S., Sakurai, H., Sugibayashi, K., Morimoto, Y., Omiya, H., Takenaka, H., Akiyama, N., Comparison of depolarizing and direct current systems on iontophoretic enhancement of transport of sodium benzoate through human and hairless rat skin (1993) J Pharm Pharmcol, 45, pp. 610-613Zakzewski, C.A., Amory, D.W., Jasaitis, D.K., Li, J.K.J., Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: preliminary report (1992) CardiovascularDrugs and Therapy, 6, pp. 589-595Bagniefski, T.M., Burnette, R.R., A comparison of pulsed and continuous current iontophoresis (1990) J Cont Release, 11, pp. 113-122Preat, V., Thysman, S., Trandermaliontophoreric delivery of sulfentanilInt (1993) J Pharmaceut, 96, pp. 189-196(2000) Obesity: Preventing and managing the global epidemic, , Geneva: World Health Organization Technical Support Series, 894, Geneva: World Health OrganizationSousa, M., Servidoni, M.F., Vinagre, A.M., Ramalho, A.S., Bonadia, L.C., Felício, V., Ribeiro, M.A., Amaral, M.D., Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis (2012) Plos One, 7, p. e47708Carlsson, A.M., Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale (1983) Pain, 16, pp. 87-101Rosenstein, B.J., Cutting, G.R., The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel (1998) J Pediatr, 132, pp. 589-595Karezeski, B., Cutting, G., Diagnosis of cystic fibrosis. CFTR-related disease and screening (2006) ProgRespir Res, 34, pp. 69-76Strausbaugh, S.D., Davis, P.B., Cystic fibrosis: a review of epidemiology and pathobiology (2007) Clin Chest Med, 28, pp. 279-288Mackay, R., George, P., Kirk, J., Sweat testing for cystic fibrosis: A review of New Zealand laboratories (2006) J Paedia Child Health, 42, pp. 160-164Cirilli, N., Podan, R., Raia, V., Audit of sweat testing: A first report from Italian cystic fibrosis centres (2008) J Cystic Fibrosis, 7, pp. 415-422Kirk, J.M., Inconsistencies in sweat testing in UK laboratories (2000) Arch Dis Child, 82, pp. 425-427Webster, H.L., Laboratory diagnosis of cystic fibrosis (1983) CRC Crit Rev in Clin LabSci, 18, pp. 313-338http://www.wescor.com/biomedical/cysticfibrosis/macroduct.htmlSabbahi, M.A., Costello, C.T., Ernran, A., A method for reducing skin irritation by iontophoresis (1994) PhysTher, 74, p. S156Su, M.H., Srinivasan, V., Ghanem, A.H., Higuchi, W.I., Quantitative in vivo iontophoreticstudies (1994) J Pharm Sci, 83, pp. 12-17Huang, Y.-Y., Wu, S.-M., Transdermal Iontophoretic Delivery of Thyrotropin-Releasing Hormone Across Excised Rabbit Pinna Skin Drug Dev (1996) Ind Pharm, 22, pp. 1075-1081Knoblauch, P., Moll, F., In vitro pulsatile and continuous transdermal delivery of buserelin by iontophoresis (1993) J Control Release, 26, pp. 203-212Okabe, K., Yamaguchi, H., Kawai, Y., New iontophoretic transdermal administration of the beta-blocker metoprolol (1986) J Control Release, 4, pp. 79-85Li, S.K., Higuchi, W.I., Zhu, H., Kern, S.E., Miller, D.J., Hastings, M.S., In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis (2003) J Control Release, 91, pp. 327-343Banga, A.K., Chien, Y.W., Iontophoretic delivery of drugs: fundamentals, developments and biomedical application (1988) J Control Rel, 7, p. 1Panzade, P., Heda, A., Puranik, P., Patni, M., Mogal, V., Enhanced Transdermal Delivery of Granisetron by Using Iontophoresis (2012) IJPR, 11, pp. 503-512Chen, L.L.H., Chien, Y.W., Transdermal iontophoretic permeation of luteinizing hormone releasing hormone: characterization of electric parameters (1996) J Control Release, 40, pp. 187-198Chien, Y.W., Siddiqui, O., Shi, W.M., Lelawongs, P., Liu, J.C., Direct current iontophoretic transdermal delivery of peptide and protein drugs (1989) J Pharm Sci, 78, pp. 376-383Hirvonen, J., Hueber, F., Guy, R.H., Current profile regulates iontophoretic delivery of amino acids across the skin (1995) J Control Release, 37, pp. 239-249Kanebako, M., Inagi, T., Takayama, K., Transdermal delivery of iondomethacin by iontophoresis (2002) Biol Pharm Bull, 25, pp. 779-782Abramowitz, D., Neoussikine, B., (1946) Treatment by Ion Transfer, p. 87. , NewYork: Grune and StrattonLeGrys, V.A., Applequist, R., Briscoe, D.R., Farrell, P., Hickstein, R., Lo, S.F., Passarell, R., Vaks, J.E., Sweat testing: sample collection and quantitative chloride analysisapproved guidelines - Third Edition (2009) Clin Lab Stand Ins, 29. , C34-A2Beauchamp, M., Lands, L.C., Sweat-Testing: A Review of Current Technical Requirements (2005) Pediatr Pulmonol, 39, pp. 507-511Chiang, C.H., Shao, C.H., Chen, J.L., Effects of pH electric current, and enzyme inhibitors on iontophoresis of delta sleep-inducing peptide (1998) Drug Dev Ind Pharm, 24, pp. 431-438Van der Geest, R., Banhof, M., Bodde, H.E., Iontophoretic delivery of apomorphine I. In-vitro optimization and validation (1997) Pharm Res, 14, pp. 1798-1803Heap, S., Guidelines for the Performance of the Sweat Test for the Investigation of Cystic Fibrosis in the UK 2nd Version. An Evidence Based Guideline (2014) R College Paediatr Child Health, 2, pp. 1-121Kalia, Y.N., Naik, A., Garrison, J., Guy, R.H., Iontophoretic drug delivery (2004) Adv Drug DelivVer, 56, pp. 619-658Barry, B.W., Drug delivery routes in skin: a novel approach (2002) Adv Drug Deliv Rev, 54, pp. S31-S40Pikal, M.J., The role of electroosmotic flow in transdermal iontophoresis (1992) Adv Drug Deliv Rev, 9, pp. 201-237Curdy, C., Kalia, Y.N., Guy, R.H., Post-iontophoresis recovery of human skin impedance in vivo (2002) Eur J Pharm Biopharm, 53, pp. 15-21Ulreich, A., Leibrecht, W., Promer, M., Kullich, W., Infiltration versus iontophoresis in case of epicondylitis. A comparative study. Physikalische Medizin Rehabilitations medizin (1996) Kurortmedizin, 6, pp. 183-185Bolfe, V.J., Ribas, S.I., Montebelo, M.I.L., Guirro, R.R.J., Comportamento da impedùncia elétrica dos tecidos biológicos durante a estimulação elétrica transcutùnea (2007) Rev Bras Fisioter, 11, pp. 153-159Bioelectrical impedance analysis-part I: review of principles and methods (2004) ClinNutr, 23, pp. 1226-1243Nakakura, M., Kato, Y., Hayakawa, E., Kuroda, T., Effect of pulse on iontophoretic delivery of desmopressin acetate in rats (1996) Biol Pharm Bull, 19, pp. 738-740Sagi-Dolev, A.M., Prutchi, D., Nathan, R.H., Three-dimensional current density distribuition under surface stimulation electrodes (1995) Med Biol Eng Comp, 33, pp. 403-408Zhu, F., Scheditz, D., Levin, N.W., Estimation of trunk extracellular volume by bioimpedance (1998) Conf Proc IEEE Eng Med Biol Soc, 20, pp. 3104-3107Chizmadzhev, Y.A., Kuzmin, P.I., Weaver, J.C., Potts, R.O., Skin appendageal macropores as a possible pat way for electrical current (1998) J Investg Dermatol Symp Proc, 3 (2), pp. 148-152Ya-Xian, R.O., Suetake, T., Tagami, H., Number of cell layers of the stratum corneum in normal skin-relationship to the anatomical location on the body, age, sex and physical parameters (1999) Arch Dermatol Res, 291, pp. 555-559Nelson, R.M., Hayes, K.W., Currier, D.P., (1999) Clinical Electrotherapy, pp. 15-54. , 3a. ed. Stanford: Appleton & LangeLow, J., Reed, A., (2000) Electrotherapy Explained: Principles and Practice, , Oxford: Butterworth-HeinemannCameron, M.H., (1999) Physical Agents in Rehabilitation: From Research to Practice, , Philadelphia: W.B.Saunders companyKubisz, L., The influence of storage time on the temperature dependence of the dc electrical conductivity of horn kereatin (2001) Bioelectrochemistry, 53, pp. 161-16

    Non-western contexts: the invisible half

    Get PDF
    Like many other disciplines within the broad area of social sciences (e.g., anthropology, gender studies, psychology, sociology, etc.), consumer research is also highly navigated by scholars from Western countries. This, however, does not mean, by any means, that consumer research is devoted to studying Western contexts only. As evident from the ever-increasing number of regional conferences (e.g., Asia-Pacific and Latin American conferences of the Association for Consumer Research) and non-Western students' enrolment in doctoral programs at Western universities, there are many more researchers (from non-Western countries) who are entering the field and enriching it by their colourful contributions. Yet, given the low number of publications on consumer research in non-Western contexts, it seems that our current knowledge in these societies has a long way to go to flourish. More specifically, and in the domain of consumption culture research, this gap is even further widened by the fact that the culture of consumption in such contexts is largely interpreted with reference to the 'grand narratives' of Western scholars (e.g., Foucault, Mafessoli, Bourdieu, Deleuze, Baudrillard, Nietzsche, Durkheim, Derrida, etc.). Therefore, from an ontological perspective, it seems that our existing knowledge about non-Western societies lies heavily on the 'theoretical structures' that are 'constructed' by Western philosophy as a set of ideas, beliefs, and practices (Said, 1978). As Belk (1995) reminds us, consumption culture always existed in all human societies. What makes contemporary societies different from that of our predecessors' is not the fact that consumption culture did not exist in those societies, but that consumption culture has become a prevailing feature in modern society (Slater, 1997; Lury, 1996; Fırat and Venkatesh, 1995; McCracken, 1988). Therefore, the nature and dynamics of consumption culture in each society should be studied not only against the sociocultural, historical, and economic background of a given context (Western or non-Western) but also with reference to the philosophical and epistemological viewpoints that analyse and interpret cultural practices of that society from within that culture. Addressing such issues, this paper discusses some of the key reasons for lack of theory development in the field from non-western contexts. The paper invites scholars in non-Western contexts to introduce the less articulated, and sometime hidden, body of knowledge from their own contexts into the field of marketing in general and consumer research in particular
    • 

    corecore