59 research outputs found

    Interactive effects of fishing effort reduction and climate change in a central Mediterranean fishing area: Insights from bio-economic indices derived from a dynamic food-web model

    Get PDF
    Disentangling the effects of mixed fisheries and climate change across entire food-webs requires a description of ecosystems using tools that can quantify interactive effects as well as bio-economic aspects. A calibrated dynamic model for the Sicily Channel food web, made up of 72 functional groups and including 13 fleet segments, was developed. A temporal simulation until 2050 was conducted to evaluate the bio-economic interactive effects of the reduction of bottom trawling fishing effort by exploring different scenarios that combine fishery and climate change. Our results indicate that direct and indirect effects produce a net increase in biomass of many functional groups with immediate decline of trawlers’ catches and economic incomes, followed by a long term increase mainly due to biomass rebuilding of commercial species which lasts 5-10 years after fishing reduction. Synergistic and antagonistic effects caused by changes in the fishing effort and in climate characterize a specific functional group’s response in biomass which, in turn, modulate also the catch and income of the other fleets, and especially of those sharing target resources. However, trawler’s intra-fleet competition is higher than the others fleet effects. In the medium term, the effects of fishing effort reduction are higher than those of climate change and seem to make exploitation of marine resources more sustainable over time and fishery processes more efficient by improving ecosystem health

    In Search of New Imaging For Historical Earthquakes: A New Geophysical Survey Offshore Western Calabria (Southern Tyrrhenian Sea, Italy)

    Get PDF
    During the summer of 2010 we carried out a survey to acquire a multidisciplinary dataset within the Gulf of Sant'Eufemia (SE Tyrrhenian sea, Italy), with the aim of studying the active tectonics affecting the region, including that potentially responsible for key, elusive earthquakes such as the to-date unexplained 8 September 1905 (Mw 7 - 7.5) earthquake. The data here analysed highlight the presence of several tectonic and morphologic features characterizing the investigated area. We have recognized the Angitola Channel, a deep and wide canyon showing a straight trend in its coastward segment, and a meandering trend in the seaward segment. Based on morpho-structural elements, we maintain that the Angitola Channel could be tectonically controlled. Moreover, several gravitational instabilities as slumps and collapses affect the flanks of the morpho-structural high, detected offshore Capo Vaticano. Very high resolution seismic data have unveiled the presence of numerous fluid escape features and several mud volcanoes straddling the sector from the coastline to seaward.INOGS (RIMA Department) supported the acquisition of the entire dataset.Published385-4013.2. Tettonica attivaJCR Journalrestricte

    Exact Black Hole and Cosmological Solutions in a Two-Dimensional Dilaton-Spectator Theory of Gravity

    Get PDF
    Exact black hole and cosmological solutions are obtained for a special two-dimensional dilaton-spectator (ϕψ\phi-\psi) theory of gravity. We show how in this context any desired spacetime behaviour can be determined by an appropriate choice of a dilaton potential function V(ϕ)V(\phi) and a ``coupling function'' l(ϕ)l(\phi) in the action. We illustrate several black hole solutions as examples. In particular, asymptotically flat double- and multiple- horizon black hole solutions are obtained. One solution bears an interesting resemblance to the 2D2D string-theoretic black hole and contains the same thermodynamic properties; another resembles the 4D4D Reissner-Nordstrom solution. We find two characteristic features of all the black hole solutions. First the coupling constants in l(ϕ)l(\phi) must be set equal to constants of integration (typically the mass). Second, the spectator field ψ\psi and its derivative ψ\psi^{'} both diverge at any event horizon. A test particle with ``spectator charge" ({\it i.e.} one coupled either to ψ\psi or ψ\psi^{'}), will therefore encounter an infinite tidal force at the horizon or an ``infinite potential barrier'' located outside the horizon respectively. We also compute the Hawking temperature and entropy for our solutions. In 2D2D FRWFRW cosmology, two non-singular solutions which resemble two exact solutions in 4D4D string-motivated cosmology are obtained. In addition, we construct a singular model which describes the 4D4D standard non-inflationary big bang cosmology (bigbangradiationdustbig-bang\rightarrow radiation\rightarrow dust). Motivated by the similaritiesbetween 2D2D and 4D4D gravitational field equations in FRWFRW cosmology, we briefly discuss a special 4D4D dilaton-spectator action constructed from the bosonic part of the low energy heterotic string action andComment: 34 pgs. Plain Tex, revised version contains some clarifying comments concerning the relationship between the constants of integration and the coupling constants

    Description and evaluation of the Earth System Regional Climate Model (Reg CM-ES)

    Get PDF
    We describe a new, state-of-the-art, Earth System Regional Climate Model (RegCM-ES), which includes the coupling between the atmosphere, ocean, and land surface, as well as a hydrological and ocean biogeochemistry model, with the capability of using a variety of physical parameterizations. The regional coupled model has been implemented and tested over some of the COordinated Regional climate Downscaling Experiment (CORDEX) domains and more regional settings featuring climatically important coupled phenomena. Regional coupled ocean-atmosphere models can be especially useful tools to provide information on the mechanisms of air-sea interactions and feedbacks occurring at fine spatial and temporal scales. RegCM-ES shows a good representation of precipitation and SST fields over the domains tested, as well as realistic simulations of coupled air-sea processes and interactions. The RegCM-ES model, which can be easily implemented over any regional domain of interest, is open source, making it suitable for usage by the broad scientific community

    Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design

    Get PDF
    Numerical models of ocean biogeochemistry are becoming the major tools used to detect and predict the impact of climate change on marine resources and to monitor ocean health. However, with the continuous improvement of model structure and spatial resolution, incorporation of these additional degrees of freedom into fidelity assessment has become increasingly challenging. Here, we propose a new method to provide information on the model predictive skill in a concise way. The method is based on the conjoint use of a k-means clustering technique, assessment metrics, and Biogeochemical-Argo (BGC-Argo) observations. The k-means algorithm and the assessment metrics reduce the number of model data points to be evaluated. The metrics evaluate either the model state accuracy or the skill of the model with respect to capturing emergent properties, such as the deep chlorophyll maximums and oxygen minimum zones. The use of BGC-Argo observations as the sole evaluation data set ensures the accuracy of the data, as it is a homogenous data set with strict sampling methodologies and data quality control procedures. The method is applied to the Global Ocean Biogeochemistry Analysis and Forecast system of the Copernicus Marine Service. The model performance is evaluated using the model efficiency statistical score, which compares the model–observation misfit with the variability in the observations and, thus, objectively quantifies whether the model outperforms the BGC-Argo climatology. We show that, overall, the model surpasses the BGC-Argo climatology in predicting pH, dissolved inorganic carbon, alkalinity, oxygen, nitrate, and phosphate in the mesopelagic and the mixed layers as well as silicate in the mesopelagic layer. However, there are still areas for improvement with respect to reducing the model–data misfit for certain variables such as silicate, pH, and the partial pressure of CO2 in the mixed layer as well as chlorophyll-a-related, oxygen-minimum-zone-related, and particulate-organic-carbon-related metrics. The method proposed here can also aid in refining the design of the BGC-Argo network, in particular regarding the regions in which BGC-Argo observations should be enhanced to improve the model accuracy via the assimilation of BGC-Argo data or process-oriented assessment studies. We strongly recommend increasing the number of observations in the Arctic region while maintaining the existing high-density of observations in the Southern Oceans. The model error in these regions is only slightly less than the variability observed in BGC-Argo measurements. Our study illustrates how the synergic use of modeling and BGC-Argo data can both provide information about the performance of models and improve the design of observing systems.</p

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system
    corecore