618 research outputs found

    Vitamin C Intravenous Treatment In the Setting of Atrial Fibrillation Ablation: Results From the Randomized, Double-Blinded, Placebo-Controlled CITRIS-AF Pilot Study

    Get PDF
    BackgroundCatheter ablation is an effective treatment for atrial fibrillation (AF), but high levels of post-procedure inflammation predict adverse clinical events. Ascorbic acid (AA) has shown promise in reducing inflammation but is untested in this population. We sought to test the feasibility, safety, and preliminary effects on inflammatory biomarkers in the CITRIS-AF (Vitamin C Intravenous Treatment In the Setting of Atrial Fibrillation Ablation) pilot study. Methods and ResultsPatients scheduled to undergo AF ablation (N=20) were randomized 1:1 to double-blinded treatment with AA (200 mg/kg divided over 24 hours) or placebo. C-reactive protein and interleukin-6 levels were obtained before the first infusion and repeated at 24 hours and 30 days. Pain levels within 24 hours and early recurrence of AF within 90 days were recorded. Median and interquartile range were aged 63 (56–70) years, 13 (65%) men, and 18 (90%) white. Baseline data were similar between the 2 groups except ejection fraction. Baseline C-reactive protein levels were 2.56 (1.47–5.87) mg/L and similar between groups (P=0.48). Change in C-reactive protein from baseline to 24 hours was +10.79 (+6.56–23.19) mg/L in the placebo group and +3.01 (+0.40–5.43) mg/L in the AA group (P=0.02). Conversely, change in interleukin-6 was numerically higher in the AA group, though not statistically significant (P=0.32). One patient in each arm developed pericarditis; no adverse events related to the infusions were seen. There were no significant differences between aggregated post-procedure pain levels within 24 hours or early recurrence of AF (both P\u3e0.05). ConclusionsHigh-dose AA is safe and well tolerated at the time of AF ablation and may be associated with a blunted rise in C-reactive protein, although consistent findings were not seen in interleukin-6 levels. Further studies are needed to validate these findings and explore the potential benefit in improving clinically relevant outcomes

    Modelling Carbon Fluxes as an Aid to Understanding Perennial Ryegrass (Lolium perenne) Root Dynamics

    Get PDF
    Despite the importance of roots in determining plant performance, the factors controlling their development and longevity remain poorly understood. Grass morphology is based on repeating units called phytomers, with each capable of producing one leaf, one daughter tiller, and one or more roots. We developed a phytomer-based understanding of root birth, growth and senescence in Lolium perenne, using a modeling approach to explore seasonal effects on root turnover dynamics, and to explore cultivar differences in these processes. Similar to leaves, roots exhibit a clear progression from initiation, growing for approximately seven phyllochrons, with growth rates strongly influenced by environmental conditions. In spring, the phyllochron decreased over the experiment, while it increased in autumn. In spring, C availability exceeding maintenance respiratory requirements allowed root growth at each phytomer position, with a 70/30 split between maintenance and growth. Under C-deficient conditions in autumn, this split was approximately 80/20, with growth limited to younger phytomer positions, while older roots were more susceptible to starvation-induced senescence due to their high C requirements for maintenance respiration

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1231/thumbnail.jp

    Ice Core Collection Experimental Device (ICCED)

    Get PDF
    The Ice Core Collection Experimental Device (ICCED) is designed for participation in the NASA Microgravity Neutral Buoyancy Experiment Design Teams (Micro-g NExT) “Under Ice Sampling Device” challenge. This challenge involves the design, development, and testing of a sampling device that will interface with a submersible vehicle in order to obtain subsurface ice samples in an underwater environment. ICCED is a remotely controlled, underwater drilling device designed to excavate and extract ice cores of 0.5 inches in diameter and 3 inches in length. ICCED consists of a drill connected to a linear slide, which is controlled by a microprocessor and able to cut through ice with the help of attached blades and a servo to power the drill. This device is designed for operation in environments such as those present on the moons of Europa and Enceladus, during which it will be able to drill into an ice surface, collect a sample, and secure the sample inside an insulated module. Development of the device is currently in the prototyping stage. Prototyping will be finished by the end of March, and the team will begin testing the prototype and redesigning, with a final model completed in April. Once final development is completed, the design will be tested in the Johnson Space Center’s Neutral Buoyancy Laboratory

    Correlations of Gene Expression with Blood Lead Levels in Children with Autism Compared to Typically Developing Controls

    Get PDF
    The objective of this study was to examine the correlation between gene expression and lead (Pb) levels in blood in children with autism (AU, n = 37) compared to typically developing controls (TD, n = 15). We postulated that, though lead levels did not differ between the groups, AU children might metabolize lead differently compared to TD children. RNA was isolated from blood and processed on Affymetrix microarrays. Separate analyses of covariance (ANCOVA) corrected for age and gender were performed for TD, AU, and all subjects (AU + TD). To reduce false positives, only genes that overlapped these three ANCOVAs were considered. Thus, 48 probe sets correlated with lead levels in both AU and TD subjects and were significantly different between the groups (p(Diagnosis × log2 Pb) < 0.05). These genes were related mainly to immune and inflammatory processes, including MHC Class II family members and CD74. A large number (n = 791) of probe sets correlated (P ≤ 0.05) with lead levels in TD but not in AU subjects; and many probe sets (n = 162) correlated (P ≤ 0.05) with lead levels in AU but not in TD subjects. Only 30 probe sets correlated (P ≤ 0.05) with lead levels in a similar manner in the AU and TD groups. These data show that AU and TD children display different associations between transcript levels and low levels of lead. We postulate that this may relate to the underlying genetic differences between the two groups, though other explanations cannot be excluded
    corecore