436 research outputs found
Two patients walk into a clinic...a genomics perspective on the future of schizophrenia
Progress is being made in schizophrenia genomics, suggesting that this complex brain disorder involves rare, moderate to high-risk mutations and the cumulative impact of small genetic effects, coupled with environmental factors. The genetic heterogeneity underlying schizophrenia and the overlap with other neurodevelopmental disorders suggest that it will not continue to be viewed as a single disease. This has radical implications for clinical practice, as diagnosis and treatment will be guided by molecular etiology rather than clinical diagnostic criteria
What Next in Schizophrenia Genetics for the Psychiatric Genomics Consortium?
Over the last 8 years the Psychiatric Genomics Consortium (PGC; http://pgc.unc.edu) has fundamentally changed the landscape for psychiatric genetics research. This has been achieved through unprecedented teamwork, involving more than 900 investigators from 40 countries, allied to rigorous methodology. Significantly, the PGC has an open-source approach with the main findings freely available for unrestricted use (http://pgc.unc.edu/downloads). Dozens of groups around the world are using PGC data to develop better analytical methods and to perform secondary analyses on a dataset representing more than 400 000 human participants
Genetic modifiers and subtypes in schizophrenia: Investigations of age at onset, severity, sex and family history
Schizophrenia is a genetically and clinically heterogeneous disorder. Genetic risk factors for the disorder may differ between the sexes or between multiply affected families compared to cases with no family history. Additionally, limited data support a genetic basis for variation in onset and severity, but specific loci have not been identified. We performed genome-wide association studies (GWAS) examining genetic influences on age at onset (AAO) and illness severity as well as specific risk by sex or family history status using up to 2762 cases and 3187 controls from the International Schizophrenia Consortium (ISC)
Identity-by-descent analysis of a large Tourette’s syndrome pedigree from Costa Rica implicates genes involved in neuronal development and signal transduction:Molecular psychiatry
Tourette Syndrome (TS) is a heritable, early-onset neuropsychiatric disorder that typically begins in early childhood. Identifying rare genetic variants that make a significant contribution to risk in affected families may provide important insights into the molecular aetiology of this complex and heterogeneous syndrome. Here we present a whole-genome sequencing (WGS) analysis from the 11-generation pedigree (>500 individuals) of a densely affected Costa Rican family which shares ancestry from six founder pairs. By conducting an identity-by-descent (IBD) analysis using WGS data from 19 individuals from the extended pedigree we have identified putative risk haplotypes that were not seen in controls, and can be linked with four of the six founder pairs. Rare coding and non-coding variants present on the haplotypes and only seen in haplotype carriers show an enrichment in pathways such as regulation of locomotion and signal transduction, suggesting common mechanisms by which the haplotype-specific variants may be contributing to TS-risk in this pedigree. In particular we have identified a rare deleterious missense variation in RAPGEF1 on a chromosome 9 haplotype and two ultra-rare deleterious intronic variants in ERBB4 and IKZF2 on the same chromosome 2 haplotype. All three genes play a role in neurodevelopment. This study, using WGS data in a pedigree-based approach, shows the importance of investigating both coding and non-coding variants to identify genes that may contribute to disease risk. Together, the genes and variants identified on the IBD haplotypes represent biologically relevant targets for investigation in other pedigree and population-based TS data
Mutation of Semaphorin-6A Disrupts Limbic and Cortical Connectivity and Models Neurodevelopmental Psychopathology
Psychiatric disorders such as schizophrenia and autism are characterised by cellular disorganisation and dysconnectivity across the brain and can be caused by mutations in genes that control neurodevelopmental processes. To examine how neurodevelopmental defects can affect brain function and behaviour, we have comprehensively investigated the consequences of mutation of one such gene, Semaphorin-6A, on cellular organisation, axonal projection patterns, behaviour and physiology in mice. These analyses reveal a spectrum of widespread but subtle anatomical defects in Sema6A mutants, notably in limbic and cortical cellular organisation, lamination and connectivity. These mutants display concomitant alterations in the electroencephalogram and hyper-exploratory behaviour, which are characteristic of models of psychosis and reversible by the antipsychotic clozapine. They also show altered social interaction and deficits in object recognition and working memory. Mice with mutations in Sema6A or the interacting genes may thus represent a highly informative model for how neurodevelopmental defects can lead to anatomical dysconnectivity, resulting, either directly or through reactive mechanisms, in dysfunction at the level of neuronal networks with associated behavioural phenotypes of relevance to psychiatric disorders. The biological data presented here also make these genes plausible candidates to explain human linkage findings for schizophrenia and autism
Genetic Classification of Populations using Supervised Learning
There are many instances in genetics in which we wish to determine whether
two candidate populations are distinguishable on the basis of their genetic
structure. Examples include populations which are geographically separated,
case--control studies and quality control (when participants in a study have
been genotyped at different laboratories). This latter application is of
particular importance in the era of large scale genome wide association
studies, when collections of individuals genotyped at different locations are
being merged to provide increased power. The traditional method for detecting
structure within a population is some form of exploratory technique such as
principal components analysis. Such methods, which do not utilise our prior
knowledge of the membership of the candidate populations. are termed
\emph{unsupervised}. Supervised methods, on the other hand are able to utilise
this prior knowledge when it is available.
In this paper we demonstrate that in such cases modern supervised approaches
are a more appropriate tool for detecting genetic differences between
populations. We apply two such methods, (neural networks and support vector
machines) to the classification of three populations (two from Scotland and one
from Bulgaria). The sensitivity exhibited by both these methods is considerably
higher than that attained by principal components analysis and in fact
comfortably exceeds a recently conjectured theoretical limit on the sensitivity
of unsupervised methods. In particular, our methods can distinguish between the
two Scottish populations, where principal components analysis cannot. We
suggest, on the basis of our results that a supervised learning approach should
be the method of choice when classifying individuals into pre-defined
populations, particularly in quality control for large scale genome wide
association studies.Comment: Accepted PLOS On
Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 genomes data
Next-generation RNA sequencing (RNA-seq) maps and analyzes transcriptomes and generates data on sequence variation in expressed genes. There are few reported studies on analysis strategies to maximize the yield of quality RNA-seq SNP data. We evaluated the performance of different SNP-calling methods following alignment to both genome and transcriptome by applying them to RNA-seq data from a HapMap lymphoblastoid cell line sample and comparing results with sequence variation data from 1000 Genomes. We determined that the best method to achieve high specificity and sensitivity, and greatest number of SNP calls, is to remove duplicate sequence reads after alignment to the genome and to call SNPs using SAMtools. The accuracy of SNP calls is dependent on sequence coverage available. In terms of specificity, 89% of RNA-seq SNPs calls were true variants where coverage is >10X. In terms of sensitivity, at >10X coverage 92% of all expected SNPs in expressed exons could be detected. Overall, the results indicate that RNA-seq SNP data are a very useful by-product of sequence-based transcriptome analysis. If RNA-seq is applied to disease tissue samples and assuming that genes carrying mutations relevant to disease biology are being expressed, a very high proportion of these mutations can be detected
Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study
Background
Copy number variants (CNVs) play a significant role in disease pathogenesis in a small subset of individuals with schizophrenia (~2.5%). Chromosomal microarray testing is a first-tier genetic test for many neurodevelopmental disorders. Similar testing could be useful in schizophrenia.
Aims
To determine whether clinically identifiable phenotypic features could be used to successfully model schizophrenia-associated (SCZ-associated) CNV carrier status in a large schizophrenia cohort.
Method
Logistic regression and receiver operating characteristic (ROC) curves tested the accuracy of readily identifiable phenotypic features in modelling SCZ-associated CNV status in a discovery data-set of 1215 individuals with psychosis. A replication analysis was undertaken in a second psychosis data-set (n = 479).
Results
In the discovery cohort, specific learning disorder (OR = 8.12; 95% CI 1.16–34.88, P = 0.012), developmental delay (OR = 5.19; 95% CI 1.58–14.76, P = 0.003) and comorbid neurodevelopmental disorder (OR = 5.87; 95% CI 1.28–19.69, P = 0.009) were significant independent variables in modelling positive carrier status for a SCZ-associated CNV, with an area under the ROC (AUROC) of 74.2% (95% CI 61.9–86.4%). A model constructed from the discovery cohort including developmental delay and comorbid neurodevelopmental disorder variables resulted in an AUROC of 83% (95% CI 52.0–100.0%) for the replication cohort.
Conclusions
These findings suggest that careful clinical history taking to document specific neurodevelopmental features may be informative in screening for individuals with schizophrenia who are at higher risk of carrying known SCZ-associated CNVs. Identification of genomic disorders in these individuals is likely to have clinical benefits similar to those demonstrated for other neurodevelopmental disorders
- …