15 research outputs found

    Early-life fecal microbiome and metabolome dynamics in response to an intervention with infant formula containing specific prebiotics and postbiotics

    Get PDF
    This study examined fecal metabolome dynamics to gain greater functional insights into the interactions between nutrition and the activity of the developing gut microbiota in healthy term-born infants. The fecal samples used here originate from a randomized, controlled, double-blind clinical study that assessed the efficacy of infant formula with prebiotics and postbiotics (experimental arm) compared with a standard infant formula (control arm). A group of exclusively breast-fed term infants was used as a reference arm. First, conventional targeted physiological and microbial measurements were performed, which showed differences in fecal Bifidobacterium levels and corresponding activity (e.g., lactate levels). Next, the overall fecal microbiota composition was determined by 16S rRNA gene amplicon sequencing. The microbiota composition profiles showed several bacterial groups in the experimental arm to be significantly different from the control arm and mostly closer to the levels observed in the reference arm. Finally, we applied an untargeted UPLC-MS/MS approach to examine changes in the fecal metabolome. Fecal metabolome profiles showed the most distinct separation, up to 404 significantly different metabolites, between the study arms. Our data reveal that infant formula with specific prebiotics and postbiotics may trigger responses in the intestinal microbiota composition that brings the ensuing fecal metabolite profile of formula-fed infants closer toward those observed in breast-fed infants. Furthermore, our results demonstrate a clear need for establishing an infant gut metabolome reference database to translate these metabolite profile dynamics into functional and physiologically relevant responses. NEW & NOTEWORTHY Untargeted metabolomics techniques can provide a ???snapshot??? of an ecosystem in response to environmental stimuli, such as nutritional interventions. Our analyses of fecal samples from infants demonstrate the potential of phenotyping by metabolomics while deciphering the complex interactions of early-life nutrition and gut microbiome development

    Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease

    Get PDF
    peer-reviewedThe faecal microbiota composition of infants born to mothers receiving intrapartum antibiotic prophylaxis with ampicillin against group B Streptococcus was compared with that of control infants, at day 7 and 30 of life. Recruited newborns were both exclusive breastfed and mixed fed, in order to also study the effect of dietary factors on the microbiota composition. Massive parallel sequencing of the V3-V4 region of the 16S rRNA gene and qPCR analysis were performed. Antibiotic prophylaxis caused the most marked changes on the microbiota in breastfed infants, mainly resulting in a higher relative abundance of Enterobacteriaceae, compared with control infants (52% vs. 14%, p = 0.044) and mixed-fed infants (52% vs. 16%, p = 0.13 NS) at day 7 and in a lower bacterial diversity compared to mixed-fed infants and controls. Bifidobacteria were also particularly vulnerable and abundances were reduced in breastfed (p = 0.001) and mixed-fed antibiotic treated groups compared to non-treated groups. Reductions in bifidobacteria in antibiotic treated infants were also confirmed by qPCR. By day 30, the bifidobacterial population recovered and abundances significantly increased in both breastfed (p = 0.025) and mixed-fed (p = 0.013) antibiotic treated groups, whereas Enterobacteriaceae abundances remained highest in the breastfed antibiotic treated group (44%), compared with control infants (16%) and mixed-fed antibiotic treated group (28%). This study has therefore demonstrated the short term consequences of maternal intrapartum antibiotic prophylaxis on the infant faecal microbial population, particularly in that of breastfed infants.This work was part funded by the Irish Department of Agriculture Food and Marine INFANTMET Project (RefNo 10FDairy), Science Foundation of Ireland–funded Centre for Science, Engineering and Technology, the Alimentary Pharmabiotic Centre and by EU FP7 MyNewGut project (No.:613979; www.mynewgut.eu). The research activity of GM and KM were supported by the Global Grant Spinner project 2013 and a Teagasc Walsh Fellowship, respectively

    Feeding difficulties during the neonatal period

    No full text

    OP-18 THE COMBINATION OF SCGOS/LCFOS AND FERMENTED INFANT FORMULA SOFTENS STOOLS OF INFANTS COMPARED TO UNFERMENTED INFANT FORMULA WITHOUT SCGOS/LCFOS

    No full text
    Hard stools can be commonly observed in formula-fed infants, but rarely in breast fed infants. The effects on stool frequency and stool consistency of a novel infant formula were evaluated in a randomized, controlled, double-blind, multicenter, parallel-group, intervention study on gastrointestinal (GI) tolerance. The novel infant formula (FF+) combined fermented formula (Lactofidus\u2122) with short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS, ratio 9:1, 0.8\u200ag/100\u200aml)

    Estimates of alpha diversity for BF-IAP, BF-C, MF-IAP and MF-C samples at day 7.

    No full text
    <p>One outlier has been identified in BF-IAP group regarding the evaluation of Simpson and Shannon indices, indicated with a circle.</p
    corecore