55 research outputs found

    Active screen plasma surface co-alloying of 316 austenitic stainless steel with both nitrogen and niobium for the application of bipolar plates in proton exchange membrane fuel cells

    Get PDF
    AbstractAustenitic stainless steel has been researched as a promising candidate material for bipolar plates in proton exchange membrane fuel cells. However, its interfacial contact resistance (ICR) is about 16 times higher that of the Department of Energy (DOE) target (10 mΩ cm2), which leads to undesirable fuel cell performance. In this work, a new hybrid plasma surface engineering process, based on active screen plasma co-alloying, has been developed to simultaneously alloy 316 austenitic stainless steel (316 SS) surfaces with both nitrogen and niobium. The results demonstrated that the layer structure of the modified surfaces can be tailored by adjusting the treatment conditions. All the plasma treated 316 SS samples exhibited significantly reduced ICR below the DOE target of 10 mΩ cm2. The corrosion resistance of the N/Nb co-alloyed 316 SS was much better than active screen plasma nitrided and marginally better than the untreated material

    Active screen plasma surface engineering of austenitic stainless steel for enhanced tribological and corrosion properties

    Get PDF
    Low temperature plasma surface engineering has been a useful method for increasing the hardness and wear resistance of austenitic stainless steel without reducing the corrosion resistance of this alloy. Plasma carburising is of particular interest as it produces thicker hardened layers than plasma nitriding, and an equivalent improvement in the tribological and corrosion performance of the base material. In this project, the active screen (AS) plasma technique was used to carburise austenitic stainless steel AISI 316 and the obtained layer of carbon expanded austenite was compared with the one produced by conventional DC plasma treatments. The hardening and wear resistance produced by AS and DC plasma carburising were equivalent. With regard to corrosion, the AS treated material performed better than its DC counterpart as a consequence of the improved surface quality of the former. The mechanism of AS carburising was comparatively studied with its AS nitriding counterpart. Different experimental arrangements and two plasma diagnostic techniques were used for this purpose: optical emission spectroscopy and electrostatic probes. The evidence shows that AS nitriding relies on the deposition of iron nitrides and the active species in the plasma to produce hardening, whilst AS carburising requires the plasma activation and moderate ion bombardment

    IFHTSE Global 21: heat treatment and surface engineering in the twenty-first century: Part 11 – survey of the heat treatment and surface engineering industry in Argentina at the beginning of the twenty-first century

    Full text link
    Heat treatment and surface engineering are enabling technologies for modern industry in technologically developed countries. However, the technical requirements of industry in the developing countries, and particularly in Argentina, are often not so demanding. This article is an attempt to reflect the current status of heat treatment and surface engineering in Argentina at the beginning of the twenty-first century, particularly in terms of available technology and human resources. Emphasis is also given to the future prospects of this area of engineering

    Wear assessment of Fe-TiC/ZrC hardfacing produced from oxides

    Full text link
    The direct conversion of oxides into carbides during plasma transferred arc welding is a promising processing route to produce wear resistant overlays at low cost. In the present study, Fe-TiC and Fe-ZrC composite overlays were produced by carbothermic reduction of TiO2 and ZrO2 during plasma transferred arc deposition. The overlays were characterised by optical microscopy, electron microscopy and X-ray diffraction. The microstructure consisted of small TiC and ZrC evenly dispersed in a pearlitic matrix. The Vickers microhardness was measured and low-stress abrasion tests were conducted. The results showed increased hardness and promising wear resistance under low-stress abrasion conditions
    • …
    corecore