75 research outputs found

    Pulmonary sequestration: a review of 26 cases

    Get PDF
    Objectives: Pulmonary sequestration is a continuum of lung anomalies for which no single embryonic hypothesis is yet available. The aim of this study was to assess the diagnostic tools and treatment for the rare condition, pulmonary sequestration, in an unspecialised centre. Methods: We performed an analysis of 26 cases of pulmonary sequestration (paediatric and adult) operated at the Centre Hospitalier Universitaire Vaudois between May 1959 and May 1997. A review of the extralobar and intralobar types of sequestrations is discussed. Angiography is compared to other diagnostic tools in this condition, and treatment is discussed. Results: Twenty-six cases of pulmonary sequestrations, a rare congenital pulmonary malformation, were operated on in the defined time period. Seventy-three percent (19) of the cases were intralobar and 27% (seven) extralobar. Extralobar localisation was basal in 71% and situated between the upper and the lower lobe in 29%. In six cases, the diagnosis was made by exploratory thoracotomy. In the other 20 cases, diagnosis was evoked on chest X-ray and confirmed by angiography. Lobectomy (46%) was the most common treatment procedure. Segmental resection was performed in 30% of the cases and bilobectomy in 4%. Post-operative morbidity was low. The most significant complications were pleural empyema, haemothorax and haemopneumoperitoneum in case of extralobar sequestration. There was no evidence of metaplasia or pre-neoplastic changes. Conclusions: Despite its rarity, some radiological features are sufficiently suggestive of diagnosis of pulmonary sequestration. Investigations are necessary in order to avoid unexpected pathology at the time of operation. Resection of the involved lung leads to excellent results and the long-term outcome is highly favourabl

    Dose-Dependent Immunomodulation of Human Dendritic Cells by the Probiotic Lactobacillus rhamnosus Lcr35

    Get PDF
    The response of the immune system to probiotics remains controversial. Some strains modulate the cytokine production of dendritic cells (DCs) in vitro and induce a regulatory response, while others induce conversely a pro-inflammatory response. These strain-dependent effects are thought to be linked to specific interactions between bacteria and pattern recognition receptors. We investigated the effects of a well characterized probiotic strain, Lactobacillus rhamnosus Lcr35, on human monocyte-derived immature DCs, using a wide range of bacterial concentrations (multiplicity of infection, MOI, from 0.01 to 100). DNA microarray and qRT-PCR analysis showed that the probiotic induced a large-scale change in gene expression (nearly 1,700 modulated genes, with 3-fold changes), but only with high doses (MOI, 100). The upregulated genes were mainly involved in immune response and identified a molecular signature of inflammation according to the model of Torri. Flow cytometry analysis also revealed a dose-dependent maturation of the DC membrane phenotype, until DCs reached a semi-mature state, with an upregulation of the membrane expression of CD86, CD83, HLA-DR and TLR4, associated with a down-regulation of DC-SIGN, MR and CD14. Measurement of the DC-secreted cytokines showed that Lcr35 induced a strong dose-dependent increase of the pro-Th1/Th17 cytokine levels (TNFα, IL-1β, IL-12p70, IL-12p40 and IL-23), but only a low increase in IL-10 concentration. The probiotic L. rhamnosus Lcr35 therefore induce a dose-dependent immunomodulation of human DCs leading, at high doses, to the semi-maturation of the cells and to a strong pro-inflammatory effect. These results contribute to a fuller understanding of the mechanism of action of this probiotic, and thus of its potential clinical indications in the treatment of either infectious or IgE-dependent allergic diseases

    Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein

    Get PDF
    Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication

    Selective IgA Deficiency

    Get PDF
    Immunoglobulin A (IgA) deficiency is the most common primary immunodeficiency defined as decreased serum level of IgA in the presence of normal levels of other immunoglobulin isotypes. Most individuals with IgA deficiency are asymptomatic and identified coincidentally. However, some patients may present with recurrent infections of the respiratory and gastrointestinal tracts, allergic disorders, and autoimmune manifestations. Although IgA is the most abundant antibody isotype produced in the body, its functions are not clearly understood. Subclass IgA1 in monomeric form is mainly found in the blood circulation, whereas subclass IgA2 in dimeric form is the dominant immunoglobulin in mucosal secretions. Secretory IgA appears to have prime importance in immune exclusion of pathogenic microorganisms and maintenance of intestinal homeostasis. Despite this critical role, there may be some compensatory mechanisms that would prevent disease manifestations in some IgA-deficient individuals. In IgA deficiency, a maturation defect in B cells to produce IgA is commonly observed. Alterations in transmembrane activator and calcium modulator and cyclophilin ligand interactor gene appear to act as disease-modifying mutations in both IgA deficiency and common variable immunodeficiency, two diseases which probably lie in the same spectrum. Certain major histocompatibility complex haplotypes have been associated with susceptibility to IgA deficiency. The genetic basis of IgA deficiency remains to be clarified. Better understanding of the production and function of IgA is essential in elucidating the disease mechanism in IgA deficiency

    Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells.

    No full text
    In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces

    Intragastric and Intranasal Administration of Lactobacillus paracasei NCC2461 Modulates Allergic Airway Inflammation in Mice.

    Get PDF
    Introduction. Preclinical and clinical evidences for a role of oral probiotics in the management of allergic diseases are emerging. Aim. We aimed at testing the immunomodulatory effects of intranasal versus intragastric administration of Lactobacillus paracasei NCC2461 in a mouse model of allergic airway inflammation and the specificity of different probiotics by comparing L. paracasei NCC2461 to Lactobacillus plantarum NCC1107. Methods. L. paracasei NCC2461 or L. plantarum NCC1107 strains were administered either intragastrically (NCC2461) or intranasally (NCC2461 or NCC1107) to OVA-sensitized mice challenged with OVA aerosols. Inflammatory cell recruitment into BALF, eotaxin and IL-5 production in the lungs were measured. Results. Intranasal L. paracasei NCC2461 efficiently protected sensitized mice upon exposure to OVA aerosols in a dose-dependent manner as compared to control mice. Inflammatory cell number, eotaxin and IL-5 were significantly reduced in BALF. Intranasal supplementation of L. paracasei NCC2461 was more potent than intragastric application in limiting the allergic response and possibly linked to an increase in T regulatory cells in the lungs. Finally, intranasal L. plantarum NCC1107 reduced total and eosinophilic lung inflammation, but increased neutrophilia and macrophages infiltration. Conclusion. A concerted selection of intervention schedule, doses, and administration routes (intranasal versus intragastric) may markedly contribute to modulate airway inflammation in a probiotic strain-specific manner

    Vaccination against Salmonella Infection: the Mucosal Way.

    No full text
    Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti-Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy
    corecore