417 research outputs found

    Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality

    Full text link
    [EN] Visible and near-infrared spectroscopy has been widely used as a non-invasive and rapid-assessment technique for the quality control of agricultural products. In this study, 325 samples of nectarines representing two commercial varieties, cv. 'Big Top' and cv. 'Magique', were analysed by visible and near-infrared diffuse reflectance spectroscopy (VIS-NIR). The spectral data were pre-treated and analysed to predict the internal quality of the samples and to discriminate between the two varieties. Good prediction of the internal quality of the samples, using partial least-squares regressions, was observed for both (R (2) (P) of 0.909 and 0.927 and RMSEP of 0.235 and 0.238 for cv. Big Top and Magique, respectively). Discriminant models, using linear discriminant and partial least-squares discriminant analyses, were built to classify the nectarines. Both methods provided good results with rates of 97.44 and 100% of correctly classified samples. The results indicated that visible and near-infrared techniques can be useful and simple methods for quality control and for the correct identification of nectarines in commercial lines as an alternative to the slower and less accurate manual classification.This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by the INIA and FEDER funds through projects RTA2012-00062-C04-01 and 03, and RTA2015-00078-00-00. Victoria Lopez Cortes thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202). The authors are also grateful to Fruits de Ponent (Lerida) for providing the fruit.Cortes-Lopez, V.; Blasco Ivars, J.; Aleixos Borrás, MN.; Cubero García, S.; Talens Oliag, P. (2017). Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality. Food and Bioprocess Technology. 10(10):1755-1766. https://doi.org/10.1007/s11947-017-1943-yS175517661010Bachion de Santana, F., Caixeta Gontijo, L., Mitsutake, H., Júnior Mazivilla, S., Maria de Souza, L., & Borges Neto, W. (2016). Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry, 209, 228–233.Bakeev, K. A. (2010). Process analytical technology. United Kingdom: Wiley.Bonany, J., Buehler, A., Carbó, J., Codarin, S., Donati, F., Echeverria, G., Egger, S., Guerra, W., Hilaire, C., Höller, I., Iglesias, I., Jesionkowska, K., Konopacka, D., Kruczynska, D., Martinelli, A., Pitiot, C., Sansavini, S., Stehr, R., & Schoorl, F. (2013). Consumer eating quality acceptance of new apple varieties in different European countries. Food Quality and Preference, 30, 250–259.Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55, 7234–7243.Carlomagno, G., Capozzo, L., Attolico, G., & Distante, A. (2004). Non-destructive grading of peaches by near-infrared spectrometry. Infrared Physics & Technology, 46, 23–29.Carr, G. L, Chubar, O., Dumas, P. (2005). Multichannel detection with a synchrotron light source: Design and potential. Spectrochemical Analysis Using Multichannel Detectors Analytical Chemistry Series, edited by Bhargava P, Levin I. Chapter 3, (pp. 56–84). Oxford: Wiley-BlackwellCayuela, J. A., & Weiland, C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest Biology and Technology, 58(2), 113–120.Clareton, M. (2000). Peach and nectarine production in France: trends, consumption and perspectives. Summaries Prunus Breeders Meeting. EMPRABA, Clima Temperado. Pelotas (RS) Brazil, November 29 to December 2000, pp. 83–91Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.Crisosto, C. H. (2002). How do we increase peach consumption? Proceedings of 5th International Symposium on Peach, ISHS. Acta Horticulturae, 592, 601–605.Crisosto, C., & Crisosto, G. (2005). Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid meeting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biology and Technology, 38, 239–246.Crisosto, C. H., Garner, D., Crisosto, G. M., Wiley, P., & Southwick, S. (1997). Evaluation of the minimum maturity index for new cherry cultivars growing in the San Joaquin Valley. Visalia: California Cherry Growers Association.Crisosto, C. H., Crisosto, G. M., & Ritenour, M. A. (2002). Testing the reliability of skin color as an indicator of quality for early season ‘Brooks’ (Prunus avium L.) cherry. Postharvest Biology and Technology, 24, 147–154.Crisosto, C. H., Crisosto, G. M., & Metheney, P. (2003). Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology, 28, 159–167.Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4, 487–504.Cunha, L. C., Teixeira, G. H. A., Nardini, V., & Walsh, K. (2016). Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy. Postharvest Biology and Technology, 112, 64–74.Della Cara, R. (2005). In calo i consumi e l’export de pesche e nettarine italiane. Rivista di Frutticoltura, 7–8, 19–20.Downey, G. (1997). Authentication of food and food ingredients by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 4, 47–61.Eskin, N.A.M. & Hoehn, E. (2013). Fruits and vegetables. Eskin, N.A.M., Shahidi, F. (Eds.), Biochemistry of foods, 3rd edn. Amsterdam, The Netherlands: Elsevier Inc. pp. 49–126.Faber, N. M. (1999). Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions. Analytical Chemistry, (71), 557–565.Fang, L., Li, H., Liu, Z., & Xian, X. (2013). Online evaluation of yellow peach quality by visible and near-infrared spectroscopy. Advance Journal of Food Science and Technology, 5(5), 606–612.Ferrer, P., Montesinos, J. L., Valero, F., & Solá, C. (2001). Production of native and recombinant lipases by Candida rugosa. Applied Biochemistry and Biotechnology, 95(3), 221–255.Font, D., Tresanchez, M., Pallejà, T., Teixidó, M., Martinez, D., Moreno, J., & Palacín, J. (2014). An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture, 102, 112–119.Fu, X., Yibin, Y., Lu, H., Xu, H., & Yu, H. (2007). FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sensing and Instrumentation for Food Quality and Safety, 1, 29–35.GenCat: Generalitat de Cataluña. 2013.Technical report 1/2011 and Technical Indicator A2. (accessed 13.05.13).Ghiani, A., Negrini, N., Morgutti, S., Baldin, F., Nocito, F. F., Spinardi, A., Mignani, I., Bassi, D., & Cocucci, M. (2011). Melting of ‘Big Top’ nectarine fruit: some physiological, biochemical, and molecular aspects. Journal of the American Society for Horticultural Science, 136, 61–68.Golic, M., & Walsh, K. B. (2006). Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 555(2), 286–291.Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.He, Y., Li, X. L., & Shao, Y. N. (2006). Discrimination of varieties of apple using near infrared spectra based on principal component analysis and artificial neural network model. Spectroscopy and Spectral Analysis, 26, 850–853.Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.Huang, L., Wu, D., Jin, H., Zhang, J., He, Y., & Lou, C. (2011). Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: a case study with mulberry fruit. Biosystems Engineering, 109(4), 377–384.Iglesias, I. (2013). Peach production in Spain: current situation and trends, from production to consumption. Proceedings of the 4th Conference, Innovation in Fruit Growing, 75–96. D. Milatovic (Ed), Serbia (Belgrad)Iglesias, I., & Echeverría, G. (2009). Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Scientia Horticulturae, 120, 41–50.Jaiswal, P., Jha, S. N., & Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae, 135, 14–22.Kamruzzaman, M., ElMasry, G., Sun, D., & Allen, P. (2012). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovate Food Science and Emerging Technologies, 16, 218–226.Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88, 1115–1127.Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, pp. F.4.3.1–F.4.3.8. Wiley, New York.Liu, Y., Chen, X., & Ouyang, A. (2008). Nondestructive determination of pear internal quality indices by visible and near infrared spectrometry. LWT - Food Science and Technology, 41, 1720–1725.Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technology, 5, 1121–1142.Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.Lu, R. (2004). Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31(2), 147–157.Ma, G., Fu, X. P., Zhou, Y., Ying, Y. B., Xu, H. R., Xie, L. J., & Lin, T. (2007). Nondestructive sugar content determination of peaches by using near infrared spectroscopy technique. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 27(5), 907–910.Magwaza, L. S., Opara, L. U., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5, 425–444.Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75, 394–404.Martins, P. A., Cirino de Carvalho, L., Cunha, L. C., Manhas, F., & Teixeira, G. H. (2016). Robust PLS models for soluble solids content and firmness determination in low chilling peach using near infrared spectroscopy (NIR). Postharvest Biology and Technology, 111, 345–351.McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble-solids assessment of post-harvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13, 131–141.Merzlyak, M. N., Solo, A. E., & Gitelson, A. A. (2003). Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 27, 197–211.Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, I. K., & Lammertyn, J. (2007). Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46, 99–118.Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed.pp. 123–132). Burnt Mill, Harlow, Essex, England: Longman Group.Padilla-Zakour, O. I. (2009). Good manufacturing practices. In N. Heredia, I. Wesley, & S. Garcia (Eds.), Microbiologically safe foods (pp. 395–415). New York: John Wiley and Sons Inc..Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1998). Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. Journal of the American Society for Horticultural Science, 123(5), 898–905.Pérez-Marín, D., Sánchez, M. T., Paz, P., González-Dugo, V., & Soriano, M. A. (2011). Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy. Food Science and Technology, 44, 1405–1414.Ravaglia, G., Sansavini, S., Ventura, M., & Tabanelli, D. (1996). Indici di maturazione e miglioramento cualitativo delle pesche. Revista di Frutticoltura, 3, 61–66.Reita, G., Peano, C., Saranwong, S., & Kawano, S. (2008). An evaluating technique for variety compatibility of fruit applied to a near infrared Brix calibration system: a case study using Brix calibration for nectarines. Journal of Near Infrared Spectroscopy, 16(2), 83–89.Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44, 250–258.Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.Sánchez, M. T., De la Haba, M. J., Guerrero, J. E., Garrido-Varo, A., & Pérez-Marín, D. (2011). Testing of a local approach for the prediction of quality parameters in intact nectarines using a portable NIRS instrument. Postharvest Biology and Technology, 60(2), 130–135.Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1, 30–34.Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified squares procedures. Analytical Chemistry, 36, 1627–1639.Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicum esculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.Singh, Z., Singh, R. K., Sane, V. A., & Nath, P. (2013). Mango—postharvest biology and biotechnology. Critical Reviews in Plant Sciences, 32(4), 217–236.Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.Tijskens, L. M. M., Zerbini, P. E., Schouten, R. E., Vanoli, M., Jacob, S., Grassi, M., & Torricelli, A. (2007). Assessing harvest maturity in nectarines. Postharvest Biology and Technology, 45, 204–213.Valero, A., Marín, S., Ramos, A. J., & Sanchis, V. (2007). Effect of preharvest fungicides and interacting fungi on Aspergillus carbonarius growth and ochratoxin A synthesis in dehydrating grapes. Letters in Applied Microbiology, 45, 194–199.Walsh, K. B., Golic, M., & Greensill, C. V. (2004). Sorting of fruit and vegetables using near infrared spectroscopy: application to soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12, 141–148.Williams, P. C. & Norris, K. H. (1987). Qualitative applications of near infrared reflectance spectroscopy. P. C. Williams & K. H. Norris (Eds.), Near infrared technology in the agricultural and food industries, pp. 241–246. St. Paul, MN: American Association of Cereal Chemist

    In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties

    Full text link
    [EN] One of the most studied techniques for the non-destructive determination of the internal quality of fruits has been visible and nearinfrared (VIS-NIR) reflectance spectroscopy. This work evaluates a new non-destructive in-line VIS-NIR spectroscopy prototype for in-line identification of five apple varieties, with the advantage that it allows the spectra to be captured with the probe at the same distance from all the fruits regardless of their size. The prototype was tested using varieties with a similar appearance by acquiring the diffuse reflectance spectrum of the fruits travelling on the conveyor belt at a speed of 0.81 m/s which is nearly 1 fruit/s. Principal component analysis (PCA) was used to determine the variables that explain the most variance in the spectra. Seven principal components were then used to perform linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). QDA was found to be the best in-line classification method, achieving 98% and 85% success rates for red and yellow apple varieties, respectively. The results indicated that the in-line application of VIS-NIR spectroscopy that was developed is potentially feasible for the detection of apple varieties with an accuracy that is similar to or better than a laboratory system.This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by INIA and FEDER funds through project RTA2015-00078-00-00. Victoria Cortes Lopez thanks the Spanish Ministry of Education, Culture and Sports for FPU grant (FPU13/04202).Cortes-Lopez, V.; Cubero-García, S.; Blasco Ivars, J.; Aleixos Borrás, MN.; Talens Oliag, P. (2019). In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties. Food and Bioprocess Technology. 12(6):1021-1030. https://doi.org/10.1007/s11947-019-02268-0S10211030126Aleixandre-Tudo, J. L., Nieuwoudt, H., & du Toit, W. (2019). Towards on-line monitoring of phenolic content in red wine grapes: a feasibility study. Food Chemistry, 270, 322–331.Alonso, J., Artigas, J., & Jimenez, C. (2003). Analysis and identification of several apple varieties using ISFETs sensors. Talanta, 59(6), 1245–1252.Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). In: Chemometrics: a practical guide, New York. USA: John Wiley and Sons.Beghi, R., Giovenzana, V., Brancadoro, L., & Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204, 46–54.Brunt, K., Smits, B., & Holthuis, H. (2010). Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part II. Development and testin of the automated semi-industrial system with in-line NIR for the characterization of potatoes. Potato Research, 53(1), 41–60.Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55(18), 7234–7243.Carr, G. L., Chubar, O., & Dumas, P. (2005). Spectrochemical analysis using infrared multichannel detectors. In R. Bhargava & I. W. Levin (Eds.), 1st ed (pp. 56–84). Oxford: Wiley-Blackwell.Casale, M., Casolino, C., Ferrari, G., & Forina, M. (2008). Near infrared spectroscopy and class modelling techniques for geographical authentication of Ligurian extra virgin olive oil. Journal of Near Infrared Spectroscopy, 16(1), 39–47.Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.Fernández-Ahumada, E., Garrido-Varo, A., Guerrero-Ginel, A. E., Wubbels, A., van der Sluis, C., & van der Meer, J. M. (2006). Understanding factors affecting near infrared analysis of potato constituents. Journal of Near Infrared Spectroscopy, 14(1), 27–35.He, Y., Li, X., & Shao, Y. (2007). Fast discrimination of apple varieties using Vis/NIR spectroscopy. International Journal of Food Properties, 10(1), 9–18.Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: with applications in R. New York: springer.Jie, D., Xie, L., Rao, X., & Ying, Y. (2014). Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biology and Technology, 90, 1–6.Kader, A. A., Kasmire, R. F., Mitchell, F. G., Reid, M. S., Sommer, N. F., & Thompson, J. F. (1985). Postharvest technology of horticultural crops (Special publication, mum. 3311, p. 192). Davis: Cooperative Extension, University of California.Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88(7), 1115–1127.Lammertyn, J., De Baerdemaeker, J., & Nicolaï, B. (2000). Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biology and Technology, 18(2), 121–132.Liu, F., Jiang, Y., & He, Y. (2009). Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer. Analytica Chimica Acta, 635(1), 45–52.López, A. F. (2003). ‘Manual para la preparación y venta de frutas y hortalizas, del campo al mercado’. PDF File: Boletín de servicios agrícolas de la FAO, 151. http://www.fao.org/tempref/docrep/fao/006/y4893S/y4893S00.pdf . Accessed 20 Aug 2018.Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.Luo, W., Huan, S., Fu, H., Wen, G., Cheng, H., Zhou, J., Wu, H., Shen, G., & Yu, R. (2011). Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apples. Food Chemistry, 128(2), 555–561.Marrazzo, W. N., Heinemann, P. H., Crassweller, R. E., & LeBlanc, E. (2005). Electronic nose chemical sensor feasibility study for the differentiation of apple cultivars. American Society of Agricultural Engineers, 48(5), 1995–2002.Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394–404.Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications.Rodríguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258.Ronald, M., & Evans, M. (2016). Classification of selected apple fruit varieties using Naive Bayes. Indian Journal of Computer Science and Engineering, 7(1), 13–19.Sabanci, K., & Ünlersen, M. F. (2016). Different apple varieties classification using kNN and MLP algorithms. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 166–169.Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.Salguero-Chaparro, L., Baeten, V., Abbas, O., & Peña-Rodríguez, F. (2012). On-line analysis of intact olive fruits by vis-NIR spectroscopy: optimisation of the acquisition parameters. Journal of Food Engineering, 112(3), 152–157.Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1(03), 30–34.Shang, L., Guo, W., & Nelson, S. O. (2015). Apple variety identification based on dielectric spectra and chemometric methods. Food Anal. Methods, 8(4), 1042–1052.Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicumesculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.Shenderey, C., Shmulevich, I., Alchanatis, V., Egozi, H., Hoffman, A., Ostrovsky, V., Lurie, S., Arie, R. B., & Schmilovitch, Z. (2010). NIRS detection of moldy core in apples. Food Bioprocess Technology, 3(1), 79–86.Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.Song, W., Wang, H., Maguire, P., & Nibouche, O. (2017). Differentiation of organic and non-organic apples using near infrared reflectance apectroscopy – a pattern recognition approach. In Unknown host publication (pp. 1–3). https://doi.org/10.1109/ICSENS.2016.7808530 .Sun, X., Liu, Y., Li, Y., Wu, M., & Zhu, D. (2016). Simultaneous measurements of Brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy. Postharvest Biology and Technology, 116, 80–87.Wojdyło, A., Oszmiański, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry, 56(15), 6520–6530.Wu, X., Wu, B., Sun, J., Li, M., & Du, H. (2016). Discrimination of apples using near infrared spectroscopy and sorting discriminant analysis. International Journal of Food Properties, 19(5), 1016–1028.Wu, X., Wu, B., Sun, J., & Yang, N. (2017). Classification of Apple varieties using near infrared reflectance spectroscopy and fuzzy discriminant C-Means clustering model. Journal of Food Process Engineering, 40, 1–7

    A comparison between NIR and ATR-FTIR spectroscopy for varietal differentiation of Spanish intact almonds

    Full text link
    [EN] The rapid and easy classification of almond varieties with similar morphology, different quality properties and, in most cases, different prices is interesting to protect both the almond industry and the consumers from fraud. Therefore, in this work, intact almond kernels from four Spanish varieties (`Guara¿, `Rumbeta¿, `Marcona¿ and `Planeta¿) were analysed using both near infrared (NIR) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. After spectra measurement, NIR and ATR-FTIR spectral data were pre-treated and employed to construct two classification methods (partial least square-discriminant analysis (PLS-DA) and quadratic discriminant analysis (QDA)) in order to check their ability to classify almonds according to their variety. The best overall accuracies (94.45%) were obtained with the PLS-DA model of ATR-FTIR and the QDA model of NIR data. These results confirm that both spectroscopic techniques, if the optimal statistical model is selected, are powerful tools to reliably discriminate almonds according to their varieties.Victoria Cortés López thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202). The authors wish to thank the cooperative Agricoop for kindly providing the samples used in the experiments. This work was partially funded by INIA and FEDER funds through project RTA2015-00078-00-00.Cortes-Lopez, V.; Barat Baviera, JM.; Talens Oliag, P.; Blasco, J.; Lerma-García, MJ. (2018). A comparison between NIR and ATR-FTIR spectroscopy for varietal differentiation of Spanish intact almonds. Food Control. 94:241-248. https://doi.org/10.1016/j.foodcont.2018.07.020S2412489

    Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review

    Full text link
    [EN] Background: The increasing demand for quality assurance in agro-food production requires sophisticated analytical methods for in-line quality control. One of these techniques is visible and near-infrared (VIS-NIR) spectroscopy, which has low running costs, does not need sample preparation, and is non-destructive, environmentally friendly, and fast. Despite these advantages, only a limited amount of research has been conducted on VIS-NIR in-line applications to measure, control, and predict quality in fruits and vegetables. Scope and approach: The applicability of VIS-NIR spectroscopy for the off-line and in-line monitoring of quality in postharvest products has been addressed in this review. The document focuses on the comparison between the two processes for the same agro-food product, highlighting the main advantages and disadvantages, problems, solutions, and differences. Key findings and conclusions: VIS-NIR techniques, combined with chemometric methods, have shown great potential due to their fast detection speed, and the possibility of simultaneously predicting multiple quality parameters or distinguishing between products according to the objectives. Being able to automate processes is a great advantage compared to routine off-line analyses, mainly due to the savings achieved in time, material, and personnel. However, in numerous cases, in-line implementation has not been accomplished in the corresponding studies, hence the scarcity of real in-line applications. Recent demands, together with the advances being made in the technology and a reduction in the price of equipment, makes VIS-NIR technology an analytical alternative for continuous real-time food quality controls, which will become predominant in the next few years.This work was partially funded by INIA and FEDER funds through research project RTA2015-00078-00-00.Victoria Cortés López thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202).Cortes-Lopez, V.; Blasco Ivars, J.; Aleixos Borrás, MN.; Cubero-García, S.; Talens Oliag, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science & Technology. 85:138-148. https://doi.org/10.1016/j.tifs.2019.01.015S1381488

    Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase II randomized trial

    Get PDF
    This analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395– 1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038

    Integration of simultaneous tactile sensing and visible and near-infrared reflectance spectroscopy in a robot gripper for mango quality assessment

    Full text link
    [EN] Development of non-destructive tools for determining mango ripeness would improve the quality of industrial production of the postharvest processes. This study addresses the creation of a new sensor that combines the capability of obtaining mechanical and optical properties of the fruit simultaneously. It has been integrated into a robot gripper that can handle the fruit obtaining non-destructive measurements of firmness, incorporating two spectrometer probes to simultaneously obtain reflectance properties in the visible and near-infrared, and two accelerometers attached to the rear side of two fingers. Partial least square regression was applied to different combinations of the spectral data obtained from the different sensors to determine the combination that provides the best results. Best prediction of ripening index was achieved using both spectral measurements and two finger accelerometer signals, with R2 P ¿ 0:832 and RMSEP of 0.520. These results demonstrate that simultaneous measurement and analysis of the data fusion set improve the robot gripper features, allowing assessment of the quality of the mangoes during pick and place operations.This work has been partially funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) and FEDER through research projects RTA2012-00062-C04-01, RTA2012-00062-C04-02, RTA2012-00062-C04-03, and by the Conselleria d' Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana, through the project AICO/2015/122. V. Cortes thanks the Spanish MEC for the FPU grant (FPU13/04202).Cortes-Lopez, V.; Blanes Campos, C.; Blasco Ivars, J.; Ortiz Sánchez, MC.; Aleixos Borrás, MN.; Mellado Arteche, M.; Cubero García, S.... (2017). Integration of simultaneous tactile sensing and visible and near-infrared reflectance spectroscopy in a robot gripper for mango quality assessment. Biosystems Engineering. 162:112-123. doi:10.1016/j.biosystemseng.2017.08.005S11212316

    Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy

    Full text link
    [EN] Early control of fruit quality requires reliable and rapid determination techniques. Therefore, the food industry has a growing interest in non-destructive methods such as spectroscopy. The aim of this study was to evaluate the feasibility of visible and near-infrared (NIR) spectroscopy, in combination with multivariate analysis techniques, to predict the level and changes of astringency in intact and in the flesh of half cut persimmon fruits. The fruits were harvested and exposed to different treatments with 95 % CO2 at 20 ºC for 0, 6, 12, 18 and 24 h to obtain samples with different levels of astringency. A set of 98 fruits was used to develop the predictive models based on their spectral data and another external set of 42 fruit samples was used to validate the models. The models were created using the partial least squares regression (PLSR), support vector machine (SVM) and least squares support vector machine (LS-SVM). In general, the models with the best performance were those which included standard normal variate (SNV) in the pre-processing. The best model was the PLSR developed with SNV along with the first derivative (1-Der) pre-processing, created using the data obtained at six measurement points of the intact fruits and all wavelengths (R2=0.904 and RPD=3.26). Later, a successive projection algorithm (SPA) was applied to select the most effective wavelengths (EWs). Using the six points of measurement of the intact fruit and SNV together with the direct orthogonal signal correction (DOSC) pre-processing in the NIR spectra, 41 EWs were selected, achieving an R2 of 0.915 and an RPD of 3.46 for the PLSR model. These results suggest that this technology has potential for use as a feasible and cost-effective method for the non-destructive determination of astringency in persimmon fruits.This work has been partially funded by the Institute Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) through research projects RTA2012-00062-004-01/03, RTA2013-00043-C02, and RTA2015-00078-00-00 with the support of European FEDER funds, and by the Conselleria d' Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana, through the project AICO/2015/122. V. Cortes thanks the Spanish MEC for the FPU grant (FPU13/04202).Cortés López, V.; Rodríguez Ortega, A.; Blasco Ivars, J.; Rey Solaz, B.; Besada, C.; Cubero García, S.; Salvador, A.... (2017). Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy. JOURNAL OF FOOD ENGINEERING. 204:27-37. doi:10.1016/j.jfoodeng.2017.02.017S273720

    Insights into Structure-Activity Relationships of Somatostatin Analogs Containing Mesitylalanine.

    Get PDF
    The non-natural amino acid mesitylalanine (2,4,6-trimethyl-L-phenylalanine; Msa) has an electron-richer and a more conformationally restricted side-chain than that of its natural phenylalanine counterpart. Taking these properties into account, we have synthesized ten somatostatin analogs containing Msa residues in different key positions to modify the intrinsic conformational flexibility of the natural hormone. We have measured the binding affinity of these analogs and correlated it with the main conformations they populate in solution. NMR and computational analysis revealed that analogs containing one Msa residue were conformationally more restricted than somatostatin under similar experimental conditions. Furthermore, we were able to characterize the presence of a hairpin at the pharmacophore region and a non-covalent interaction between aromatic residues 6 and 11. In all cases, the inclusion of a D-Trp in the eighth position further stabilized the main conformation. Some of these peptides bound selectively to one or two somatostatin receptors with similar or even higher affinity than the natural hormone. However, we also found that multiple incorporations of Msa residues increased the life span of the peptides in serum but with a loss of conformational rigidity and binding affinity

    Assessing Viral Abundance and Community Composition in Four Contrasting Regions of the Southern Ocean

    Get PDF
    We explored how changes of viral abundance and community composition among four contrasting regions in the Southern Ocean relied on physicochemical and microbiological traits. During January–February 2015, we visited areas north and south of the South Orkney Islands (NSO and SSO) characterized by low temperature and salinity and high inorganic nutrient concentration, north of South Georgia Island (NSG) and west of Anvers Island (WA), which have relatively higher temperatures and lower inorganic nutrient concentrations. Surface viral abundance (VA) was highest in NSG (21.50 ± 10.70 × 106 viruses mL−1) and lowest in SSO (2.96 ± 1.48 × 106 viruses mL−1). VA was positively correlated with temperature, prokaryote abundance and prokaryotic heterotrophic production, chlorophyll a, diatoms, haptophytes, fluorescent organic matter, and isoprene concentration, and was negatively correlated with inorganic nutrients (NO3−, SiO42−, PO43−), and dimethyl sulfide (DMS) concentrations. Viral communities determined by randomly amplified polymorphic DNA–polymerase chain reaction (RAPD-PCR) were grouped according to the sampling location, being more similar within them than among regions. The first two axes of a canonical correspondence analysis, including physicochemical (temperature, salinity, inorganic nutrients—NO3−, SiO42−, and dimethyl sulfoniopropionate -DMSP- and isoprene concentrations) and microbiological (chlorophyll a, haptophytes and diatom, and prokaryote abundance and prokaryotic heterotrophic production) factors accounted for 62.9% of the variance. The first axis, temperature-related, accounted for 33.8%; the second one, salinity-related, accounted for 29.1%. Thus, different environmental situations likely select different hosts for viruses, leading to distinct viral communities.En prens

    Marine Carbonyl Sulfide (OCS) and Carbon Disulfide (CS\u3csub\u3e2\u3c/sub\u3e): A Compilation of Measurements in Seawater and the Marine Boundary Layer

    Get PDF
    Carbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have attracted increased interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished (mainly shipborne) measurements in seawater and the marine boundary layer for both gases, available at https://doi.org/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e., cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations
    corecore