8 research outputs found

    Decompressive craniectomy following traumatic brain injury: developing the evidence base.

    Get PDF
    In the context of traumatic brain injury (TBI), decompressive craniectomy (DC) is used as part of tiered therapeutic protocols for patients with intracranial hypertension (secondary or protocol-driven DC). In addition, the bone flap can be left out when evacuating a mass lesion, usually an acute subdural haematoma (ASDH), in the acute phase (primary DC). Even though, the principle of "opening the skull" in order to control brain oedema and raised intracranial pressure has been practised since the beginning of the 20th century, the last 20 years have been marked by efforts to develop the evidence base with the conduct of randomised trials. This article discusses the merits and challenges of this approach and provides an overview of randomised trials of DC following TBI. An update on the RESCUEicp study, a randomised trial of DC versus advanced medical management (including barbiturates) for severe and refractory post-traumatic intracranial hypertension is provided. In addition, the rationale for the RESCUE-ASDH study, the first randomised trial of primary DC versus craniotomy for adult head-injured patients with an ASDH, is presented.The RESCUEicp study is funded by the Efficacy and Mechanism Evaluation (EME) Programme, an MRC and National Institute for Health Research (NIHR) partnership (project number 09/800/16). The views expressed in this publication are those of the authors and not necessarily those of the MRC, NHS, NIHR or the Department of Health. The RESCUE-ASDH study is funded by the NIHR Health Technology Assessment programme (project number 12/35/57). The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the Health Technology Assessment programme, NIHR, NHS or the Department of Health.This is the final version of the article. It first appeared from Taylor & Francis via https://doi.org/10.3109/02688697.2016.115965

    Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension.

    Get PDF
    BACKGROUND: The effect of decompressive craniectomy on clinical outcomes in patients with refractory traumatic intracranial hypertension remains unclear. METHODS: From 2004 through 2014, we randomly assigned 408 patients, 10 to 65 years of age, with traumatic brain injury and refractory elevated intracranial pressure (>25 mm Hg) to undergo decompressive craniectomy or receive ongoing medical care. The primary outcome was the rating on the Extended Glasgow Outcome Scale (GOS-E) (an 8-point scale, ranging from death to "upper good recovery" [no injury-related problems]) at 6 months. The primary-outcome measure was analyzed with an ordinal method based on the proportional-odds model. If the model was rejected, that would indicate a significant difference in the GOS-E distribution, and results would be reported descriptively. RESULTS: The GOS-E distribution differed between the two groups (P<0.001). The proportional-odds assumption was rejected, and therefore results are reported descriptively. At 6 months, the GOS-E distributions were as follows: death, 26.9% among 201 patients in the surgical group versus 48.9% among 188 patients in the medical group; vegetative state, 8.5% versus 2.1%; lower severe disability (dependent on others for care), 21.9% versus 14.4%; upper severe disability (independent at home), 15.4% versus 8.0%; moderate disability, 23.4% versus 19.7%; and good recovery, 4.0% versus 6.9%. At 12 months, the GOS-E distributions were as follows: death, 30.4% among 194 surgical patients versus 52.0% among 179 medical patients; vegetative state, 6.2% versus 1.7%; lower severe disability, 18.0% versus 14.0%; upper severe disability, 13.4% versus 3.9%; moderate disability, 22.2% versus 20.1%; and good recovery, 9.8% versus 8.4%. Surgical patients had fewer hours than medical patients with intracranial pressure above 25 mm Hg after randomization (median, 5.0 vs. 17.0 hours; P<0.001) but had a higher rate of adverse events (16.3% vs. 9.2%, P=0.03). CONCLUSIONS: At 6 months, decompressive craniectomy in patients with traumatic brain injury and refractory intracranial hypertension resulted in lower mortality and higher rates of vegetative state, lower severe disability, and upper severe disability than medical care. The rates of moderate disability and good recovery were similar in the two groups. (Funded by the Medical Research Council and others; RESCUEicp Current Controlled Trials number, ISRCTN66202560 .).Supported by the Medical Research Council (MRC) and managed by the National Institute for Health Research (NIHR) on behalf of the MRC–NIHR partnership (grant no. 09/800/16), and by the NIHR Cambridge Biomedical Research Centre, the Academy of Medical Sciences and Health Foundation (Senior Fellowship, to Dr. Hutchinson), and the Evelyn Trust. Dr. Hutchinson is supported by a Research Professorship from the NIHR, the NIHR Cambridge Biomedical Research Centre, a European Union Seventh Framework Program grant (CENTER-TBI; grant no. 602150), and the Royal College of Surgeons of England; Dr. Kolias, by a Royal College of Surgeons of England Research Fellowship and a Sackler Studentship; Dr. Pickard, by the NIHR Brain Injury Healthcare Technology Co-operative and a Senior Investigator award from the NIHR; and Dr. Menon, by a Senior Investigator award from the NIHR and a European Union Seventh Framework Program grant (CENTER-TBI; grant no. 602150). The University of Cambridge and Cambridge University Hospitals NHS Foundation Trust were the trial sponsors.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa160521

    Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons:a sensitive target for ethanol

    Get PDF
    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioural actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterise DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory 'phasic' postsynaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and to a lesser extent by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a 'tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviourally-relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal and by taurine, an ingredient of certain 'energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol

    Evaluation of outcomes among patients with traumatic intracranial hypertension treated with decompressive craniectomy vs standard medical care at 24 month

    No full text
    Importance Trials often assess primary outcomes of traumatic brain injury at 6 months. Longer-term data are needed to assess outcomes for patients receiving surgical vs medical treatment for traumatic intracranial hypertension. Objective To evaluate 24-month outcomes for patients with traumatic intracranial hypertension treated with decompressive craniectomy or standard medical care. Design, Setting, and Participants Prespecified secondary analysis of the Randomized Evaluation of Surgery With Craniectomy for Uncontrollable Elevation of Intracranial Pressure (RESCUEicp) randomized clinical trial data was performed for patients with traumatic intracranial hypertension (&gt;25 mm Hg) from 52 centers in 20 countries. Enrollment occurred between January 2004 and March 2014. Data were analyzed between 2018 and 2021. Eligibility criteria were age 10 to 65 years, traumatic brain injury (confirmed via computed tomography), intracranial pressure monitoring, and sustained and refractory elevated intracranial pressure for 1 to 12 hours despite pressure-controlling measures. Exclusion criteria were bilateral fixed and dilated pupils, bleeding diathesis, or unsurvivable injury. Interventions Patients were randomly assigned 1:1 to receive a decompressive craniectomy with standard care (surgical group) or to ongoing medical treatment with the option to add barbiturate infusion (medical group). Main Outcomes and Measures The primary outcome was measured with the 8-point Extended Glasgow Outcome Scale (1 indicates death and 8 denotes upper good recovery), and the 6- to 24-month outcome trajectory was examined. Results This study enrolled 408 patients: 206 in the surgical group and 202 in the medical group. The mean (SD) age was 32.3 (13.2) and 34.8 (13.7) years, respectively, and the study population was predominantly male (165 [81.7%] and 156 [80.0%], respectively). At 24 months, patients in the surgical group had reduced mortality (61 [33.5%] vs 94 [54.0%]; absolute difference, −20.5 [95% CI, −30.8 to −10.2]) and higher rates of vegetative state (absolute difference, 4.3 [95% CI, 0.0 to 8.6]), lower or upper moderate disability (4.7 [−0.9 to 10.3] vs 2.8 [−4.2 to 9.8]), and lower or upper severe disability (2.2 [−5.4 to 9.8] vs 6.5 [1.8 to 11.2]; χ27 = 24.20, P = .001). For every 100 individuals treated surgically, 21 additional patients survived at 24 months; 4 were in a vegetative state, 2 had lower and 7 had upper severe disability, and 5 had lower and 3 had upper moderate disability, respectively. Rates of lower and upper good recovery were similar for the surgical and medical groups (20 [11.0%] vs 19 [10.9%]), and significant differences in net improvement (≄1 grade) were observed between 6 and 24 months (55 [30.0%] vs 25 [14.0%]; χ22 = 13.27, P = .001). Conclusions and Relevance At 24 months, patients with surgically treated posttraumatic refractory intracranial hypertension had a sustained reduction in mortality and higher rates of vegetative state, severe disability, and moderate disability. Patients in the surgical group were more likely to improve over time vs patients in the medical group
    corecore