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Abstract  

Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are 

implicated in ethanol’s actions, with certain receptors and ion channels emerging as putative targets. 

The dorsal raphe (DR) nucleus is associated with the behavioural actions of alcohol, but ethanol 

actions on these neurons are not well understood. Here, using immunohistochemistry and 

electrophysiology we characterise DR inhibitory transmission and its sensitivity to ethanol. DR 

neurons exhibit inhibitory “phasic” postsynaptic currents mediated primarily by synaptic GABAA 

receptors (GABAAR) and to a lesser extent by synaptic glycine receptors (GlyR). In addition to 

such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of 

certain neurons may be governed by a “tonic” conductance resulting from ambient GABA 

activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only 

a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a 

large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In 

agreement, for DR neurons strychnine increases their input resistance, induces membrane 

depolarization and consequently augments their excitability. Importantly, this glycinergic 

conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviourally-relevant ethanol 

concentrations, by drugs used for the treatment of alcohol withdrawal and by taurine, an ingredient 

of certain “energy drinks” often imbibed with ethanol. These findings identify extrasynaptic GlyRs 

as critical regulators of DR excitability and a novel molecular target for ethanol. 
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 Introduction 

Alcoholism is a significant addictive disorder, associated with considerable medical, social and 

economic costs (Nutt et al, 2010). The behavioural effects of ethanol include euphoria, loss of 

motor control, sedation and anxiolysis (Harris et al, 2008; Mihalek et al, 2001). The mesolimbic 

dopaminergic system has been implicated in the rewarding properties of ethanol (Gonzales et al, 

2004). However, animal and clinical studies identify an additional important role for serotonergic 

neurotransmission originating from the raphe nuclei (Lanteri et al, 2008; Lemarquand et al, 1994a 

& b; Lyness and Smith, 1992). Recombinant receptor studies reveal the function of certain GABAA 

receptors (GABAARs) and strychnine-sensitive glycine receptors (GlyRs) to be enhanced by 

behaviourally relevant concentrations (10 – 100 mM) of ethanol, suggesting these inhibitory 

receptors may be alcohol targets (Harris et al, 2008; Perkins et al, 2010). Although the dorsal raphe 

(DR) is implicated in rewarding and addictive behaviour (Kranz et al, 2010), the influence of 

ethanol on glycinergic and GABAergic inhibition in the DR neurons has not been assessed. Here, 

we have utilised electrophysiology and immunohistochemistry to investigate the physiological and 

pharmacological properties of mouse serotonergic DR GABAARs and GlyRs. We reveal that these 

neurons utilise a synergistic organisation for inhibition whereby GABAARs primarily mediate 

synaptic “phasic” inhibition, but act in concert with extrasynaptic GlyRs, which provide a large 

“tonic” inhibition that profoundly decreases neuronal excitability. Importantly, although a 

behaviourally relevant concentration (30 mM) of ethanol had little effect upon GABAAR-mediated 

synaptic inhibition, it greatly and selectively enhanced the extrasynaptic glycinergic tonic and 

phasic conductance, thereby suppressing DR neuron firing. Furthermore, this GlyR-mediated 

conductance was greatly increased by clomethiazole, used clinically to treat alcohol withdrawal 

(Williams and McBride, 1998), sarcosine, which inhibits the GlyT1 transporter, an action reported 

to decrease ethanol intake and preference in rats (Molander et al, 2007) and by taurine, an 

ingredient of certain “energy drinks” often consumed with ethanol.  
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Collectively, our findings reveal a crucial role for DR extrasynaptic GlyRs in influencing neuronal 

excitability. Our pharmacological studies suggest an interaction with DR GlyRs may contribute to 

the behavioural actions of ethanol and the efficacy of certain treatments for alcoholism. These 

extrasynaptic receptors should allow a better understanding of how ethanol influences behaviour 

and may represent a new target to treat alcohol abuse (Li et al, 2012; Yevenes and Zeilhofer, 2011). 
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Materials and Methods   

Husbandry Mice were group housed throughout and were given free access to food and water in a 

vivarium at 21 ± 2 oC and 55% humidity. The holding room lights were on between 0600 hr. and 

1800 hr. daily. The δ0/0 mice, together with wild type (WT) control mice utilized for 

immunocytochemical analysis were generated on a single C57BL6 background as described 

previously (Mihalek et al, 2001). All procedures involving experimental animals were performed in 

accordance with the Animals (Scientific Procedures) Act, 1986 (UK) and under the auspices of the 

Project Licence PIL 60/4005. 

 

Slice Preparation and Electrophysiology Dorsal raphe (DR) or nucleus accumbens (NAcc) slices 

were prepared from C57BL6 mice (P17–30) of either sex. Mice were killed by cervical dislocation. 

The brain was removed and placed in ice-cold artificial cerebrospinal fluid (aCSF) containing, in 

mM, 126 NaCl, 26 NaHCO3, 10 MgSO4, 10 Glucose, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, pH 7.4 

when bubbled with 95% O2, 5% CO2. Coronal sections (300 μm) were cut using a Vibratome Series 

1000 microtrome (Intracel) and incubated in oxygenated aCSF at room temperature for a minimum 

of one hour. 

Whole-cell patch-clamp recordings were made from DR or medium spiny neurons of the NAcc core 

(Dixon et al, 2010) visually identified with an Axioskop 2 FS (Zeiss) microscope, equipped with 

IR-DIC optics. Patch electrodes were prepared from borosilicate glass (Garner Glass Co.) with an 

open tip resistance of 3–5 MΩ when filled with intracellular solution (ICS) containing, in mM, 140 

CsCl, 10 HEPES, 10 EGTA, 2 MgCl2, 1 CaCl2, 2 Mg-ATP and 5 QX-314 (pH 7.2-7.3, 305–310 

mOsm). 

Using an Axopatch-1D amplifier (Molecular Devices) in the whole-cell configuration of the patch-

clamp recording technique, miniature inhibitory post-synaptic currents (mIPSCs) and the holding 

current were recorded at a holding potential (VH) of -60 mV and 35 °C in an extracellular solution 

(ECS) containing in mM, 126 NaCl, 26 NaHCO3, 10 glucose, 2.95 KCl, 2 MgCl2, 2 CaCl2 and 1.25 
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NaH2PO4 (306-309 mOsm) in the presence of 2 mM kynurenic acid and 0.5 μM tetrodotoxin 

(TTX). GABAA and GlyR mIPSCs were isolated using selective antagonists of the GlyR, 

(strychnine hydrochloride), and the GABAAR (bicuculline methobromide) respectively. 

Cell-attached recordings were made at 30 °C, in the absence of a glutamate receptor antagonist, in 

ECS containing the α1 adrenergic receptor agonist phenylephrine, to elicit regular neuronal firing 

(Judge et al, 2004). Patch electrodes were filled with ECS. Action currents were recorded with a 

voltage-clamp that maintained a zero pA leak current (Perkins, 2006). Whole-cell current-clamp 

recordings were made at 30 °C in ECS. Patch electrodes were filled with a potassium gluconate-

based ICS, composed of (in mM) 130 K gluconate, 10 HEPES, 10 EGTA, 2 Mg-ATP, 1 NaCl, 1 

MgCl2 and 0.5 Na-GTP (Sigma), (pH 7.2, 300-310 mOsm adjusted with D-mannitol). The liquid 

junction potential was corrected (Neher, 1992). 

 

Data analysis Recordings were acquired via digital audiotape using a Sony PCM-R300 and a DRA-

200 interface (BioLogic) and analysed offline with Strathclyde Electrophysiology Software, 

Electrophysiology Data Recorder / Whole cell Analysis Program (WinEDR / WinWCP; courtesy of 

Dr. John Dempster, University of Strathclyde, U.K.). Details of the data analysis are supplied in the 

Supplementary Information.   

Reagents and drugs All reagents were obtained from Sigma-Aldrich-RBI, Tocris, or VWR unless 

otherwise stated. GABA, strychnine hydrochloride, sarcosine, clomethiazole (all from Sigma-

Aldrich-UK), bicuculline methobromide (Tocris, Bristol, UK) and GES (Toronto Research 

Chemicals Inc., Canada) were prepared as aqueous stock solutions and then diluted to the required 

concentration in ECS. Cyclothiazide (Tocris, Bristol, UK) was prepared as a 1000 fold concentrated 

stock in DMSO and diluted to the desired concentration with ECS. The final DMSO concentration 

(0.1%) had no effect upon the GlyR-mediated response. All drugs were applied to the brain slice via 

the perfusion system (3-6 ml/min) and allowed to infiltrate the slice for a minimum of 10 min. 

before recordings were acquired. Because of the low frequency of GlyR mIPSCs, the effect of 
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ethanol upon GlyR mIPSCs properties was evaluated by comparing GlyR mIPSCs recorded from 

slices pre-treated for 10 minutes with ethanol (30 mM) with those recorded from slices incubated in 

ECS for the same duration.  

Statistical analysis All data are presented as the arithmetic mean ± S.E.M. (standard error of the 

mean). The statistical significance of measurements was calculated using the Student’s t-test (paired 

or unpaired), regular ANOVA, or repeated measure ANOVA (for normalised data) using Microsoft 

Excel and SigmaStat as appropriate. The non-parametric Kolmogorov-Smirnoff (KS) test (SPSS 

v15) was used to compare the inter-event interval (IEI) in control recordings and after drug 

application and, with the exception of the effect of ethanol upon GlyR mIPSCs (see above), to 

compare populations of individual events (mIPSCs) prior to and after drug application to a given 

cell using a stringent criterion for significance (P < 0.01).  

Immunohistochemistry  

Tissue preparation for immunohistochemistry The data presented in this study is derived from two 

WT and two δ0/0 adult male mice. Anaesthesia was induced with isoflurane and maintained with 

urethane (1.25 g/kg of bodyweight; i.p.). The animals were perfused transcardially with 0.9 % 

saline solution for 3 min, followed by a 15 min fixation with 1 % paraformaldehyde and 15 % v/v 

saturated picric acid in 0.1 M phosphate buffer (PB), pH 7.4. The brains were kept in the same 

fixative solution overnight at 4 °C. Coronal sections of the DR and NAcc, 50 µm thick, were 

prepared on a Vibratome and stored in 0.1 M PB containing 0.05 % sodium azide. 

Immunohistochemical reactions. Visualisation of biocytin-filled cells To confirm that the recorded 

cells were serotonergic, biocytin was added to the intracellular electrolyte of the patch electrode. 

Immunohistochemistry for tryptophan hydroxylase (TPH) -to identify the DR- and visualization of 

biocytin (to identify the labelled cell) was performed according to our previous protocols (Swinny 

et al, 2010).  

“Visualisation” of glycine receptor expression The immunohistochemical protocols are as 

described previously (Corteen et al, 2011). The following antibodies were used: 1) a mouse 
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monoclonal antibody mAb4a against the GlyR, (1:2000; Pfeiffer et al, 1984; a gift from Heinrich 

Betz, Max-Planck Institute for Brain Research, Frankfurt, Germany); 2) a polyclonal antibody 

against neuroligin2 used to visualise inhibitory synapses, (1:1000; Briatore et al, 2010; Synaptic 

Systems, catalogue number 129203); 3) a polyclonal antibody against TPH used to visualise 

serotonergic neurons, (1:3000) (Millipore, catalogue number AB1541); 4) a polyclonal antibody 

against dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa 

(DARPP-32) used to visualise MSNs of the NAcc (1:250; Santa Cruz, catalogue number sc-8483) 

and; 5) a polyclonal antibody against the δ subunit of the GABAAR (a gift from Werner Sieghart). 

Sections were examined with a confocal laser-scanning microscope (LSM710; Zeiss) using a Plan 

Apochromatic 100x DIC oil objective (NA1.46). All images presented represent a single optical 

section.  

Quantification of the density of NL2 and GlyR clusters and their relative proportion of co-

localisation on TPH or DARPP-32 immunopositive profiles Tissue from two animals (4 DR 

sections and 4 NAcc sections, 2 sections per region per animal) was used to quantify the density 

(number of clusters per 1000 μm2) of NL2 and GlyR clusters and the proportion of GlyR clusters 

which co-localise with NL2 according to previously published methods (Corteen et al, 2011). Three 

fields of view (FOV) were randomly selected within the midline of the DR, or the core of the NAcc 

of each tissue section and Z-stacks consisting of three optical sections were acquired for each FOV 

(n = 9 optical sections per section of tissue). Within a FOV, the number of puncta within an optical 

section and the number of puncta which co-localised, was manually counted using ImageJ software. 

The means ± SD for all fields of view within, between sections and between animals were 

compared for statistical differences using Kruskal–Wallis one-way analysis of variance. These 

values were then pooled since there were no statistical differences (P > 0.05) between the different 

FOV, between sections and between animals. The mean ± SD density data presented are thus 

derived from a total of 36 optical sections for the DR and 36 for the NAcc. 
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Results 

Phasic and tonic inhibitory transmission in serotonergic dorsal raphe neurons. 

All recordings were made from DR neurons situated medially throughout the rostral caudal axis. In 

the mouse the large majority of these neurons are serotonergic, with GABAergic neurons restricted 

to the lateral wings (Brown et al, 2008; Calizo et al, 2011). Confirmation that the recorded cells 

were serotonergic was obtained by post-hoc immunohistochemical analysis of biocytin-filled cells 

(Figure 1a) and by current-clamp recordings, revealing the focal application of 5-HT (100 μM) to 

produce a membrane hyperpolarisation of such neurons (data not shown). To characterise neuronal 

phasic inhibition i.e. mediated by the transient activation of synaptic receptors, DR neurons were 

voltage-clamped (-60 mV) to record miniature inhibitory postsynaptic currents (mIPSCs-Figure 

1b). The frequency of such events was greatly reduced by bicuculline (30 μM), confirming that they 

are primarily mediated by synaptic GABAARs. However, in the presence of bicuculline and the 

ionotropic glutamate receptor antagonist kynurenic acid, mIPSCs were still evident, albeit at a low 

frequency. Such events were abolished by strychnine (0.5 μM), demonstrating that they are 

mediated by synaptic GlyRs (Figure 1b). Although both GABAAR- and GlyR-mediated mIPSCs 

were evident for all DR neurons, their properties were distinct. In particular, the decay times of 

glycine-mediated mIPSCs were ~ 50% less than those mediated by GABA and, in agreement with 

the limited glycinergic innervation of the DR (Rampon et al, 1999), their frequency of occurrence 

was considerably lower (Figure 1c, Table S1A). Note that gender did not influence the properties 

of either GABAAR, or GlyR-mediated mIPSCs and data were therefore pooled (Table S1A). 

To investigate whether DR neurons exhibit a tonic inhibitory conductance i.e. mediated by ambient 

transmitter activating either GABAARs and/or GlyRs (Farrant and Nusser, 2005), the effect on the 

holding current (Vh = -60 mV) of bicuculline (30 μM), or strychnine (0.5 μM) respectively, was 

determined. The GABAAR antagonist induced an outward current (26 ± 8 pA; n = 5) in only 28% of 

neurons (n = 5 of 18 tested). Bicuculline-insensitive neurons may nevertheless express 

extrasynaptic GABAARs that are inactive, due to low ambient GABA. However, the bath 
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application of 10 μM GABA, a concentration greater than that usually employed to activate 

extrasynaptic GABAA receptors (Scimemi et al, 2005; Wlodarczyk et al, 2013), did not induce a 

change in the holding current, or RMS (Figure S1a), suggesting that only a limited neuronal 

population express extrasynaptic GABAARs. Moreover, after the application of GABA, the bath 

application of bicuculline (30 µM) revealed a small tonic current in only ~30% of the neurons tested 

(data not shown). By contrast, in the absence of exogenous glycine, 62% of neurons were sensitive 

to strychnine (31 of 50 tested), producing an outward current for responsive neurons (-45 ± 7 pA; n 

= 31), considerably greater than that produced by bicuculline (Figure 2a, top trace and b). 

Furthermore, the bath application of glycine induced an inward current in 90 % (30 µM; -64 ± 8 

pA, 44 of 49 tested) and 100 % (100 µM; -273 ± 66 pA, n = 10) of neurons tested (Figure 2a, 

bottom trace and b). Gender did not influence the glycinergic tonic conductance, the amplitude of 

the glycine-evoked current, or the percentage of sensitive neurons and thus, data were pooled 

(Table S1B). Similarly, the focal pressure application of glycine (15 psi, 10-30 ms duration, 300 

μM) induced an inward current for all neurons tested (-120 ± 19 pA, n = 5). Collectively, these 

findings reveal all serotonergic DR neurons to express GlyRs and, for the majority of neurons, these 

receptors mediate a large resident tonic current. 

Confocal immunohistochemistry was used to further investigate the expression of GlyRs in the DR 

and to elucidate the proportion of receptors expressed within synapses as indicated by the inhibitory 

synaptic marker, neuroligin 2 (NL2; Varoqueaux et al, 2004). Labelling of GlyRs with the well-

characterised mouse monoclonal pan antibody mAb4a (Pfeiffer et al, 1984) revealed numerous, 

membrane bound immunoreactive clusters on somatic and dendritic compartments of tryptophan 

hydroxylase (TPH)-immunopositive cells (Figure 3a, b and c), with the glycinergic clusters being 

similar to those described for other brain regions e.g. brain stem (Lorenzo et al, 2007). However, 

the majority of GlyR immunopositive puncta did not co-localise with NL2 puncta (Figure 3a, b & 

c). Thus, quantitative analysis of GlyR and NL2 immunopositive clusters revealed a mean cluster 

density of 75 ± 14 and 54 ± 12 (clusters/1000 μm2) respectively, although only ~ 41% (31 ± 11 
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/1000 μm2) of GlyR clusters co-localised with NL2 clusters. This finding contrasts with the 

comparative labelling density of GlyR clusters determined on medium spiny neurons (MSNs) of the 

nucleus accumbens (NAcc - Figure 3d, e and f), made under identical conditions in the same 

animals. The quantified density of GlyR clusters in the NAcc was 25 ± 8/1000 μm2, which equates 

to only 33% of the GlyR cluster density measured in the DR. However, 61% (14 ± 6 /1000 μm2) of 

GlyR puncta in these neurons co-localised with NL2, suggesting that the level of expression, as well 

as the trafficking of GlyRs between synaptic and extrasynaptic compartments, is cell-type specific 

(see below). 

The influence of the resident glycinergic tonic conductance on DR neuronal excitability was 

investigated by utilising strychnine. In both current- and voltage-clamp recordings this GlyR 

antagonist (1 μM) increased the input resistance in 8 of 9 neurons tested (Table S2). In these 9 

neurons, strychnine depolarised 7 cells by an average of 6  1 mV (Table S2), with no change in 

the remaining 2 cells. To further assess the impact of GlyR activation upon the excitability of DR 

neurons, cell-attached voltage-clamp recordings of action currents were made (Perkins, 2006). To 

mimic the physiological noradrenergic input to the DR and produce regular neuronal firing, 

recordings were made in the presence of the α1-adrenoceptor agonist phenylephrine (Judge et al, 

2004). Focally applied glycine (300 μM) induced a transient, cessation of DR neuronal firing, 

which was sensitive to block by strychnine, in all cells tested (control inter-event interval (IEI) = 

0.27 ± 0.02 s; glycine IEI = 0.85 ± 0.11 s, P < 0.01, n = 7 - Figure 4a and b). Additionally, in 

current-clamp recordings, in 7 of 9 cells tested strychnine (1 μM) produced a leftward shift of the 

input-output relationship and reduced the minimum current required to elicit action potential firing 

i.e. the rheobase, thus increasing the cell excitability (rheobase, control = 71 ± 16 pA; + strychnine 

= 48 ± 14 pA, n= 7, P < 0.05; see Materials and Methods and Figure 4c and d).  
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Dorsal raphe glycine receptors: a relevant ethanol target? 

Independently, both the DR and GlyRs have been implicated in the actions of ethanol (Aguayo and 

Pancetti, 1994; Eggers and Bergers, 2004; Lemarquand et al, 1994a & b; Mascia et al, 1996; 

Perkins et al, 2010; Pistis et al, 1997; Valenzuela et al, 1998). Supporting a contribution of DR 

GlyRs to the behavioural actions of alcohol, the bath application of a concentration of ethanol (30 

mM), which results in mild intoxication, induced an inward current (ΔI = -43 ± 18 pA; n = 6; 

Figure 5a,c), which was blocked by the subsequent application of strychnine, and an associated 

increase in membrane current noise (ΔRMS = 4.2 ± 1.1 pA; n = 6) in 6 of 9 (67%) neurons tested 

(i.e. a similar proportion of neurons to those sensitive to strychnine). Furthermore, in the presence 

of pre-applied glycine (30 μM), ethanol (30 mM) induced an additional strychnine-sensitive inward 

current in all neurons tested (ΔI = -77 ± 12 pA; n = 7; i.e. an ~ 2 fold increase, P < 0.05 vs. glycine 

alone- Figures 5b,c and 6b). Confirming ethanol specificity, a mannitol-based (30 mM) hyper-

osmotic extracellular solution had no effect on the neuronal holding current, or RMS (P > 0.05). 

This facilitatory effect of ethanol was additionally investigated by the brief, focal application of 

glycine (300 μM). For all neurons tested, bath applied ethanol (30 mM) clearly enhanced the 

glycine-evoked current and this effect was quantified as the total charge transfer i.e. area under the 

curve (control = 85 ± 16 fC; ethanol = 166 ± 37 fC; n = 5, P < 0.05) of such glycine-evoked 

currents (Figure 5d).  

We next investigated whether DR synaptic GlyRs are ethanol sensitive. Ethanol (30 mM) had no 

effect on the frequency, or amplitude of GlyR-mediated mIPSCs, but caused a clear prolongation of 

their decay time (Figure 5e, Table 1). Hence, both synaptic and extrasynaptic GlyRs of DR 

neurons are highly sensitive to ethanol. By contrast, ethanol (30 mM) had no effect upon GABAAR-

mediated mIPSC kinetics or amplitude, although it produced a modest, but significant increase in 

their frequency in 4 of 6 neurons tested (P < 0.01 KS test; 134 ± 3% of control; n = 4, P < 0.01- 

Figure 5e, Table 1). Moreover, in the presence of GABA (10 μM), ethanol (30 mM) did not affect 

the holding current, or the associated RMS (Figure S1b). Extrasynaptic GABAARs containing the δ 
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subunit (δ-GABAARs) are proposed targets of ethanol (Korpi et al, 2007; Mody et al, 2007). 

However, no δ protein immunoreactivity was detected in DR neurons compared to the dentate gyrus 

and thalamic relay nuclei (Figure S1c). 

To further assess the impact of ethanol upon the excitability of DR neurons, cell-attached voltage-

clamp recordings of action currents were performed in the presence of phenylephrine (10 μM; 

Judge et al, 2004) and bicuculline (30 μM). In the absence of added glycine, ethanol (30 mM) 

reduced the frequency of action currents in 1 out of 7 cells tested (Control: 3.4 Hz; + Ethanol: 2.5 

Hz; P < 0.01 by KS test; i.e. a 25 % reduction), while having no significant effect in the remaining 

neurons possibly because glycine levels in the slices are insufficient for ethanol’s action to affect 

phenylephrine-evoked firing. In agreement, bath-applied glycine (100 μM) reduced the frequency 

of action currents from 2.6 ± 0.2 Hz to 1.2 ± 0.4 Hz (i.e. a 54 % reduction; P < 0.01 vs. control; n = 

5, see Figure 5f for representative plot). In these cells, the subsequent addition of ethanol (30 mM) 

further reduced neuronal firing to 0.4 ± 0.4 Hz (P < 0.05 vs. Gly 100 μM; n = 5, Figure 5f). Both 

effects were sensitive to strychnine (1 μM), which increased the frequency of action current firing 

to above that of the original control (3.6 ± 0.3 Hz i.e. 138 % of control, P < 0.05; n = 5, Figure 5f). 

Collectively, these findings identify the DR extrasynaptic GlyR as an important molecular target for 

ethanol. 

Taurine, an agonist of GlyRs and GABAARs (Albrecht and Schousboe, 2005), is present in certain 

“energy drinks” e.g. “Red Bull”, in substantial amounts (1 g/250 ml/can http://www.canadian-

seeker.com/ADHD/Taurine.htm.). Given the popular trend to consume alcohol in combination with 

such “energy drinks”, it is conceivable that ethanol and taurine act in unison to enhance GlyR 

function. Unfortunately, commercially available taurine is contaminated by glycine (Lape et al, 

2008). Therefore, we investigated the action of ethanol (30 mM) in the presence of 

guanidinoethanesulfonic acid (GES), a selective taurine re-uptake inhibitor (Albrecht and 

Schousboe, 2005; Alexander et al, 2011). In the presence of bicuculline (30 μM), to antagonise any 

GABAAR-mediated contribution by taurine (Albrecht and Schousboe, 2005), GES (300 μM), on all 
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neurons tested, induced an inward current (-23 ± 3 pA, n = 5), which was further enhanced by 30 

mM ethanol (ΔI = -30 ± 13 pA, n = 5, i.e. an ~ 2 fold increase, P < 0.05 vs. GES alone- Figure 6a, b 

and d). Both the GES and the GES + ethanol-induced currents were blocked by strychnine (0.5 

μM). Our observation of an interaction of ethanol and taurine on the DR GlyR tonic current 

suggests that the popular trend to drink ethanol together with “energy drinks” containing 

considerable amounts of taurine warrants caution. 

We next explored whether known (clomethiazole) and putative treatments (inhibitors of glycine 

transporters) for alcohol abuse, in common with ethanol, influenced these extrasynaptic GlyRs. 

Clomethiazole enhances the function of both GABAARs and GlyRs (Hales and Lambert, 1992) and 

in Europe is a common treatment for alcohol withdrawal  

(Williams and McBride, 1998). In common with ethanol, the glycine (30 µM)-induced inward 

current (-67  16 pA) was further enhanced by the subsequent application of clomethiazole (100 

μM, ΔI = -55 ± 12 pA in 7 of 8 cell recorded (88%); i.e. an ~ 2 fold increase of the glycine (30 

μM)-evoked conductance) and blocked by strychnine (0.5 µM) in all neurons tested (Figure 6b). 

However, in contrast to ethanol, clomethiazole (100 μM) additionally enhanced GABAAR-mediated 

synaptic transmission by increasing the amplitude and prolonging the decay of GABAAR-mediated 

mIPSCs, but with no effect on their frequency (Table S3). A selective GlyT1 inhibitor (ORG 

25935) decreases ethanol intake and preference in rats (Molander et al, 2007). Here, in all neurons 

tested, the selective GlyT1 inhibitor, sarcosine (300 μM; Alexander et al, 2011) induced an inward 

current (-85 ± 26 pA, n =11), that was reversed by strychnine (0.5 μM - Figure 6c and d). 

Glycine receptors of the nucleus accumbens are relatively insensitive to ethanol.  

Previous reports have indicated the presence of GlyRs in the NAcc (Martin and Siggins, 2002), a 

finding consistent with our immunohistochemical analysis (Figure 3d, e & f). Given the established 

role of this brain region in addiction and reward (Koob and Volkow, 2010), we explored whether 

our findings for DR neurons extended to accumbal MSNs. Under identical recording conditions to 

those utilised for DR neurons, strychnine (0.5 μM) did not reveal any synaptic, or tonic glycinergic 
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conductance in MSNs. However, on all MSNs tested, the focal application of glycine (1 mM) 

consistently elicited an inward current (-353 ± 57 pA; n = 16), that was blocked by strychnine (0.5 

μM). Similarly, bath applied glycine (100 μM) induced an inward current (-41 ± 4 pA, n = 4) on all 

neurons tested, albeit of a much smaller magnitude than that produced by this concentration of 

agonist for DR neurons (-273 ± 66 pA, n = 10; Figure S2a). However, in contrast to DR neurons, 

ethanol (30 mM), in the presence of glycine (100 μM), had no significant effect on the glycinergic 

conductance of MSNs (ΔI = -11 ± 5 pA; ΔRMS = 1.2 ± 0.7 pA; n = 6; P > 0.05; Figure S2b), 

revealing neuronal specificity for the ethanol-GlyR interaction. 

Recombinant expression studies propose ethanol enhancement of GlyR function to be subunit 

dependent i.e. α1 >> α2/α3 (Mascia et al, 1996). To explore the subunit composition of GlyRs in 

the DR and accumbal MSNs, we utilised cyclothiazide, a relatively selective inhibitor of α2- 

compared to α1-GlyRs (Zhang et al, 2008). For DR neurons the inward current evoked by the focal 

application of glycine was unaffected by the bath application of 100 μM cyclothiazide (101 ± 2% of 

control, n = 5; P > 0.05), but in contrast was reduced (80 ± 3% of control; n = 5; P < 0.01) for 

accumbal MSNs (Figure S2c). These findings are consistent with the reported abundant and 

selective expression of α1-GlyR in the DR compared to the NAcc (Jonsson et al, 2009; 

http://mouse.brain-map.org/welcome.do;jsessionid=0CDE823DFD3D02505E0EB0DF5D4C95C4) 

and provide a parsimonious explanation for the selective modulation by ethanol of the glycinergic 

conductance in DR, but not accumbal MSN neurons. 
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Discussion   

We reveal that DR serotonergic neurons utilise an unusual synergistic organisation for inhibition, 

whereby extrasynaptic GlyRs mediate a large “tonic” inhibition, which profoundly decreases 

neuronal excitability, and acts in concert with synaptic GABAARs that primarily mediate fast 

“phasic” inhibition. Importantly, a behaviourally relevant concentration of ethanol selectively 

enhances the GlyR phasic and tonic conductance to suppress DR neuronal firing, with little effect 

upon GABAAR-mediated synaptic or tonic inhibition.  

DR neurons exhibit a large extrasynaptic glycinergic tonic conductance, which influences neuronal 

excitability. 

Strychnine-sensitive GlyRs have traditionally been associated with the regulation of inhibition in 

lower centres of the CNS e.g. spinal cord (Yevenes and Zeilhofer, 2011). However, it is now 

recognised that these receptors are additionally expressed in higher centres, including the 

hippocampus and prefrontal cortex, where they are primarily expressed extrasynaptically (Badanich 

et al, 2013; Chattiparkon and McMahon, 2002; Keck and White, 2009; Lu and Ye, 2011; Xu and 

Gong, 2010). For GABAARs, tonic inhibition mediated by extrasynaptic GABAARs has emerged as 

a powerful mechanism to influence neuronal excitability of higher CNS centres and an important 

target for a variety of clinically relevant drugs (Belelli et al, 2009; Farrant and Nusser, 2005). By 

contrast, equivalent evidence for an analogous form of inhibition mediated by extrasynaptic GlyRs 

is limited. Utilising immunohistochemistry and electrophysiology we reveal that all serotonergic 

DR neurons express extrasynaptic GlyRs and for the majority of these neurons their receptor 

expression is sufficient to mediate a large tonic conductance, caused by their activation by ambient 

endogenous agonist. The neurophysiological significance of this conductance is revealed by the 

antagonist strychnine, which both depolarized and increased the excitability of these serotonergic 

neurons, suggesting that this GlyR-mediated tonic conductance will influence 5-HT release. 

Modulation of anxiety-like behaviour in rodents is associated with region-selective changes in 

serotonergic transmission in the terminal fields of the DR projections (Rueter and Jacobs, 1996; 
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Storey et al, 2006).Whether in vivo this glycinergic conductance influences 5HT release and 

consequently influences behaviours such as anxiety provides scope for future investigation. 

 

Ethanol selectively decreases DR neuronal excitability via an action at strychnine- and ethanol-

sensitive glycine receptors. 

Importantly, a concentration of ethanol impairing physiological functions (30 mM) caused a large 

enhancement of the GlyR-mediated tonic conductance and a consequent decrease in DR 

excitability. Interestingly, in vivo acute ethanol decreased the firing rate in a proportion (67%) of rat 

DR serotonergic neurons similar to that affected in vitro in the present study (Pistis et al, 1997). 

Potentially, ethanol could indirectly increase the glycinergic conductance by releasing taurine as a 

consequence of astrocyte swelling (Albrecht and Schousboe, 2005; Adermark et al, 2011). 

However, we suggest this scenario is unlikely for the following reasons. Firstly, ethanol actions are 

selective for DR neurons GlyRs, as accumbal GlyRs appeared insensitive, despite ethanol inducing 

both taurine release and astrocyte swelling in this region (Adermark et al, 2011). As taurine will 

activate GlyRs in the NAcc, these observations strongly suggest ethanol actions to be mediated by a 

potentiation of GlyR function. Secondly, GlyR mIPSCs are significantly prolonged by ethanol. As 

taurine would not prolong the synaptic response, this observation suggests that ethanol directly 

modulates glycine receptors expressed synaptically. 

Amongst other putative ethanol candidates, GABAARs, particularly extrasynaptic receptors 

incorporating the δ subunit, have been proposed as clinically relevant targets (Korpi et al, 2007; 

Mody et al, 2007). However, our immunohistochemistry revealed no evidence for expression of δ-

GABAARs in serotonergic DR neurons. Furthermore, the glycine-enhancing effect of ethanol was 

highly selective. Thus, in common with other reports (Badanich et al, 2013; Wietlauf et al, 2008), 

ethanol was ineffective on the few neurons that exhibited a GABAAR-mediated tonic current, 

although for some neurons it did cause a modest increase in the frequency of GABAAR-mediated 

mIPSCs.  
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Is this effect of ethanol neuron selective? Consistent with previous reports for the rat (Martin and 

Siggins, 2002; Molander and Soderpalm, 2005), our immunohistochemistry reveals expression of 

GlyRs in mouse accumbens MSNs, albeit at a significantly lower level than in the DR. However, in 

contrast to the DR, our electrophysiological studies reveal these GlyRs are not tonically active. 

Furthermore, when activated by added glycine these GlyRs are ethanol-insensitive. This differential 

action of ethanol may reflect the preferential expression of ethanol sensitive α1-GlyRs in the DR 

compared to accumbal MSNs (Jonsson et al, 2009), where our pharmacological analysis suggests 

α2-GlyRs to be the dominant isoform. This interpretation is consistent with the reported selectivity 

of ethanol for α1- vs. α2-GlyRs (Mascia et al, 1996; Yevenes et al, 2010) and the recent report 

selectively implicating α1-GlyRs in the potentiating actions of zinc on ethanol sensitivity of GlyRs 

(McCracken et al, 2013). Interestingly, some of the actions of ethanol in the NAcc have been 

proposed to be secondary to an elevation in the dopamine (DA) outflow, mediated by strychnine-

sensitive GlyRs located on accumbal GABA-ergic MSNs (Chau et al, 2010). Our findings would 

appear inconsistent with this interpretation, although it remains possible that ethanol elevates DA 

content in the NAcc via a distinct strychnine-sensitive GlyR isoform (other than α2), at locations 

other than those on MSN neurons e.g. on GABAergic terminals impinging on the dopaminergic cell 

body within the VTA, or dopaminergic terminals within the NAcc. The former suggestion is 

supported by the proposal that glycine regulation of dopamine levels requires activation of 

dopaminergic cell bodies (Hernandes et al, 2007; Molander and Soderpalm, 2005). Furthermore, in 

support, intra-VTA injections of glycine decreases ethanol consumption and preference in rats in a 

strychnine-sensitive fashion (Li et al, 2012).  

Could these extrasynaptic GlyRs be a behaviourally relevant ethanol target? Given that blockade of 

the tonic current by strychnine is associated with an increase in neuronal excitability, it is 

conceivable that ethanol enhancement of this conductance and the associated decrease of 

excitability may reduce 5-HT release and consequently influence behaviour. Indeed, drugs that 

reduce ethanol intake, interfere with the serotonergic system (Lanteri et al, 2008; Lemarquard et al, 
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1994a,b). The terminal fields of the DR serotonergic neurons include prefrontal cortex, 

hippocampus, amygdala and NAcc, all areas implicated in the mediation of anxiety, reward and 

alcohol action (Koob and Volkow, 2010; Kranz et al, 2010; Vengeline et al, 2008). Furthermore, a 

reduction in 5-HT activity in the mPFC is associated with reduced ethanol intake (Deckel et al, 

1997) and a paradigm that decreases anxiogenic-like behaviour in rodents is associated with a 

reduction of 5-HT release in the mPFC (Storey et al, 2006). Therefore, we speculate that ethanol 

enhancement of DR GlyR function may influence serotonergic activity and consequently contribute 

to the anxiolytic properties of this alcohol. Future behavioural studies are required to explore this 

concept.  

 

Summary. 

Collectively, we provide the first demonstration that the activity of DR serotonergic neurons is 

greatly influenced by a tonic conductance mediated by extrasynaptic GlyRs. Importantly, this 

inhibitory conductance is selectively enhanced by ethanol. A schematic representation of the 

proposed role of inhibitory transmission mediated by GlyRs in the mouse DR and its influence on 

neuronal excitability is depicted in Figure 7. 

Given that the DR is implicated in stress, anxiety and reward, these extrasynaptic GlyRs may be a 

clinically relevant target for ethanol (Baer et al, 2003), and may provide the impetus to develop 

GlyR-based therapeutics for the treatment of alcohol withdrawal. This concept is supported by the 

demonstration that both clomethiazole (a current treatment for alcohol withdrawal) and a GlyT1 

inhibitor (active in animal models of alcohol withdrawal) greatly enhance the DR tonic conductance 

at clinically relevant concentrations (Harris et al, 2010).  
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Table 1: A comparison of the effect of 30 mM ethanol (EtOH), upon the properties of GlyR- 
and GABAAR-mediated mIPSCs.  
 
 
 

Control GlyR 
mIPSCs (n=14) 

+30 mM EtOH 
GlyR mIPSCs 
(n=5) 

Control GABAAR 
mIPSCs (n=6) 

+30 mM EtOH 
GABAAR mIPSCs 
(n=6) 

Peak Amplitude (pA) -69 ± 4 -69 ± 4 -66 ± 6 -65 ± 2 
Rise Time (ms) 0.6 ± 0.1 0.7 ± 0.1 * 0.6 ± 0.1 0.6 ± 0.1 
τ (ms) 3.8 ± 0.2 5.8 ± 0.3 *** 5.5 ± 0.3 6.2 ± 0.4 
Frequency (Hz) 0.4 ± 0.1 0.8 ± 0.6 1.5 ± 0.3 + ‡ 2.0 ± 0.4 + ‡ 

 
* P < 0.05, *** P < 0.001, unpaired Student’s t test, comparing control and +30 mM ethanol for 
GlyR mIPSCs; ‡ P < 0.01, paired Student’s t test for GABAA mIPSCs + n = 4. 
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Figure legends 

 

Figure 1 The majority of mIPSCs recorded from serotonergic DR neurons are mediated by 

synaptic GABAARs. (a) A representative image of one of the recorded and filled DR neurons 

indicating that it is a serotonergic neuron. (i) Shows biocytin labelling within the recorded cell, (ii) 

illustrates immunoreactivity for tryptophan hydroxylase (TPH), a marker for serotonergic neurons, 

(iii) the overlay confirms that the recorded cell expresses TPH. Scale bar 10 μm. (b) Illustrated are 

sections (2 s duration) of whole-cell voltage-clamp recordings of mIPSCs obtained from a 

representative DR neuron in the presence of 2 mM kynurenic acid and 0.5 μM TTX before (top 

trace) and after the bath application of the GABAAR antagonist bicuculline (BIC, 30 μM-middle 

trace) or the combined application of bicuculline (30 μM) and the glycine receptor antagonist 

strychnine (STRY, 0.5 μM - bottom trace). The majority of mIPSCs are blocked by bicuculline, 

indicating that they are mediated by GABAARs. The remaining mIPSCs are mediated by GlyRs as 

demonstrated by their blockade following the application of strychnine. Note the higher frequency 

and slower decay of the GABAARs compared to GlyRs mIPSCs. (c) Normalised (to peak 

amplitude) ensemble averages of exemplar GABAAR (black) and GlyR (grey) mIPSCs 

superimposed on the same scale to illustrate the differences in their decay kinetics. Note the GlyR-

mediated mIPSCs exhibit a faster decay, which is approximately half that of the GABAAR-

mediated mIPSCs. 

 

 

Figure 2 DR neurons exhibit a large tonic inhibitory conductance mediated by extrasynaptic 

GlyRs. (a) Representative recordings (VH = -60 mV) from DR neurons (left), illustrating the 

outward and inward current induced by 0.5 μM strychnine (STRY, top trace) and 30 μM glycine 

(GLY, bottom trace), respectively. The corresponding all-points histograms are given to the right of 

the traces. Note that the exemplar 5-HT neuron illustrated in the top trace exhibits a large tonic 

conductance as revealed by strychnine, whereas, although the neuron illustrated in the bottom trace 

exhibits an inward current when challenged with 30 µM glycine, the subsequent application of 

strychnine only returns the holding current to the pre-glycine level i.e. in the absence of added 

glycine, this particular neuron does not exhibit an endogenous tonic conductance. (b) A graph 

summarising the changes in holding current evoked by strychnine (0.5 μM, n = 31) and glycine (30 

and 100 μM, n = 44 and 10 respectively) for the responsive neurons i.e. 62%, 90% and 100% for 

strychnine, glycine 30 µM and glycine 100 µM challenges, respectively. Error bars indicate S.E.M. 

Labels are the same for calibration bars shown in top and bottom traces. 
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Figure 3 Distribution of GlyR expression and inhibitory synapses in the DR and NAcc. (a) An 

intense punctate GlyR staining (red) is evident on the membranes of serotonergic cells stained with 

TPH (blue) in the DR. (b) The inhibitory synaptic marker protein, neuroligin2 (NL2; green) shows 

punctate staining mainly on the dendrites of TPH-immunopositive cells (blue). (c) An overlay of a 

and b reveals that some GlyR puncta co-localise with NL2 puncta (yellow). Note that a significant 

proportion of GlyR puncta, particularly on the TPH dendrites, do not co-localise with NL2, 

suggesting an extrasynaptic locus of expression. (d) In contrast to the DR, putative medium spiny 

neurons of the NAcc stained for DARPP-32 (blue) show much fewer GlyR immunopositive puncta 

(red). (e) NL2 puncta (green) in the NAcc are located on somata and dendritic compartments. (f) In 

contrast to the DR, the majority of the GlyR puncta co-localise with NL2 in the NAcc (yellow). For 

each pair of images, the bottom image is a magnified section (defined by the white rectangle) of the 

corresponding top image. Scale bar of top images, 5 μm; bottom images, 2 μm.  

 

Figure 4 In DR neurons extrasynaptic GlyRs greatly influences neuronal excitability. (a) A 

representative cell-attached voltage-clamp recording of action currents illustrating the suppression 

of their discharge (in the presence of phenylephrine 10 μM) by the focal application (duration 20 

ms, pressure 15 psi) of 300 μM glycine (GLY) to an individual DR neuron. (b) A bar chart 

illustrating the mean increase (for 7 neurons tested) of the inter-event interval produced by the focal 

application of 300 μM glycine. (c) Representative whole-cell current-clamp recording of action 

potentials elicited in response to a subset of current pulses (bottom traces; 60 – 100 pA) in control 

conditions (top traces) and following the bath application of 0.5 μM strychnine (STRY- lower 

traces). Note the increase in AP frequency following strychnine application in these exemplar 

traces. (d) A graph depicting the input-output relationship for 7 DR neurons in control conditions 

(●) and in the presence of strychnine (○). The response is expressed normalised to the averaged 

maximum number of APs elicited in response to current injection steps. Note that the input-output 

relationship is shifted to the left in the presence of strychnine, thus indicating an increased neuronal 

excitability. * P < 0.05; ** P < 0.01, vs. control by paired Student’s t test. Error bars indicate 

S.E.M. 

 

Figure 5 Ethanol enhances the function of DR GlyRs receptors and suppresses neuronal 

excitability. (a) A representative whole-cell voltage-clamp recording illustrating that ethanol (30 

mM) - in the absence of added glycine- produces a large inward current, that is reversed by the 

subsequent application of strychnine (STRY, 0.5 μM) to beyond baseline (see corresponding all 

point histogram on the right of the trace). Thus, ethanol acts to enhance the endogenous glycinergic 

tonic conductance. (b) A representative whole-cell voltage-clamp recording illustrating that ethanol 
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(30 mM) - in the presence of 30 µM glycine (GLY)- produces a large inward current, that is 

reversed by strychnine (STRY, 0.5 μM) to beyond baseline (see corresponding all point histogram 

on the right). Thus, both the effect of glycine and ethanol are mediated by GlyRs. (c) A bar graph 

summarising the current induced by the bath application of 30 mM ethanol in the absence (white), 

or the presence of 30 μM glycine (grey) in 6 and 7 DR neurons respectively. Data are derived from 

ethanol-sensitive neurons only (6 out of 9 and 7 out of 7 in the absence and presence of 30 μM 

glycine respectively). Note that in the absence of added glycine, the proportion of ethanol-sensitive 

neurons (67 %) was similar to those sensitive to strychnine i.e. exhibiting an endogenous 

glycinergic conductance. (d) A representative whole-cell voltage-clamp recording of the current 

induced by the focal application (duration 20 ms, pressure 10 psi) of 300 μM glycine to a DR 

neuron before and after the bath application of 30 mM ethanol (EtOH). Note that ethanol increases 

the total charge transfer. (e) Representative normalised (to control peak amplitude) ensemble 

averages of GlyR- (top traces) and GABAAR-mediated (bottom traces) mIPSCs in control 

conditions (black) and in the presence of 30 mM ethanol (grey). Note that ethanol prolongs the 

decay of GlyR- but not that of GABAAR-mediated mIPSCs. Labels are the same for calibration bars 

shown for top and bottom traces. (f) A frequency plot depicting the inhibition of action current 

discharge by 100 μM glycine (in the presence of 10 μM phenylephrine) obtained from a 

representative recording of a DR neuron. The plot further demonstrates that ethanol (30 mM) 

enhances this inhibitory effect of glycine. Note that the subsequent application of strychnine not 

only reverses the inhibitory effects of glycine and ethanol, but increases the frequency of action 

current discharge to a level greater than control, thus suggesting the presence of a GlyR-mediated 

inhibitory tone.  

 

 

Figure 6 The GlyR-mediated tonic current of DR neurons is enhanced by inhibition of the 

GlyT1 or the taurine transporter, by clomethiazole and by ethanol. (a) A representative whole-

cell voltage-clamp recording from a DR neuron illustrating the ethanol (EtOH, 30 mM)-mediated 

increase of the GES (300 μM)-evoked current. Note that both effects are sensitive to block by 

strychnine (0.5 μM STRY). The corresponding all points histogram is given on the right of the 

trace. (b) A summary graph illustrating the fold increase for the responsive neurons of the 1) 

glycine (30 μM)-evoked current by: ethanol (30 mM, n = 7; left column) and clomethiazole (100 

μM, n = 7; centre column) and 2) the GES (300 μM)-evoked current by ethanol (30 mM, n = 5; 

right column). Error bars indicate the S.E.M. (c) A representative whole-cell voltage-clamp 

recording from a DR neuron illustrating the GlyR-mediated inward current produced by the bath 

application of the GlyT1 inhibitor sarcosine (SARC, 300 μM) Note that the current induced by 



 34

sarcosine is sensitive to block by strychnine (STRY, 0.5 μM). (d) A bar graph summarising the 

current induced in DR neurons by sarcosine (300 µM, n = 11) and the taurine transporter blocker, 

GES (300 μM, n = 5). Error bars denote S.E.M. 

 

Figure 7 A model for the role of inhibitory transmission in the mouse dorsal raphe nuclei and 

the relevance of modulation of the glycinergic conductance to the DR neuronal output.  (a) A 

simplified schematic representation of the topographical organization of dorsal raphe nuclei 

Illustrating its principal neuronal inputs and outputs. Inhibitory inputs to 5-HT neurons (ochre) are 

mediated by both GABAA receptors (GABAARs) and strychnine-sensitive glycine receptors (GlyRs). 

GABAergic inputs (grey) are mainly, but not exclusively of local origin, whereas the glycinergic 

neuronal inputs (yellow) originate out with the dorsal raphe (e.g. PAG and the reticular system). In 

addition, glial-derived taurine/β-alanine (salmon pink) and glycine can activate the inhibitory tonic 

conductance (see below). The glycinergic conductance exerts a powerful control over DR neuronal 

excitability (see traces right). Enhancement of the conductance by glycine, or by ethanol and 

suppression by strychnine, significantly reduces and increases respectively the action potential 

discharge of DR 5-HT neurons. (b) Our findings indicate that DR 5-HT neurons utilise a unique 

synergistic organisation for inhibition whereby GABAARs (blue) primarily mediate synaptic or 

“phasic” inhibition, whereas extra-synaptic GlyRs (yellow) provide a large “tonic” conductance that 

profoundly decreases neuronal excitability (top trace right). A behaviourally relevant concentration 

(30 mM) of ethanol selectively enhances the extrasynaptic (bottom trace right) and synaptic (left 

trace) glycinergic conductance to consequently suppress DR neuronal firing [see traces in (a)], but 

has little effect upon GABAAR-mediated synaptic inhibition. The large GlyR-mediated conductance 

is additionally greatly increased by clomethiazole, which is used clinically to treat alcohol 

withdrawal (Williams & McBride, 1998) and by sarcosine, which inhibits the GlyT1 transporter, an 

action recently reported to decrease ethanol intake and preference in rats (Molander et. al., 2007). 

Moreover, taurine, an ingredient of certain energy drinks, often taken together with ethanol, 

enhances the effect of ethanol upon the tonic glycinergic conductance (see Discussion for additional 

details). PFC: prefrontal cortex; LC: locus coreleus; Aq: aqueduct; PAG: peri-aqueductal grey; DR: 

dorsal raphe; lwDR: DR lateral wing; NAcc: nucleus accumbens; GlyT1: glycine transporter 1; 

TauT: taurine transporter. 
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