102 research outputs found
The Atmospheric Dispersion Corrector Software for the VST
The effects of atmospheric differential refraction on astrophysical measurements are well known. In particular, as a ray of light passes through the atmosphere, its direction is altered by the effects of atmospheric refraction. The amount of this effect depends basically on the variation of the refractive index along the path of the ray. The real accuracy needed in the atmosphere model and in the calculation of the correction to be applied is of course, considerably worse, especially at large zenith angles. On the VLT Survey Telescope (VST) the use of an Atmospheric Dispersion Corrector (ADC) is foreseen at a wide zenith distance range. This paper describes the software design and implementation aspects regarding the analytical correction law discovered to correct the refraction effect during observations with VST
Massive Star cluster formation under the microscope at z=6
We report on a superdense star-forming region with an effective radius (R_e)
smaller than 13 pc identified at z=6.143 and showing a star-formation rate
density \Sigma_SFR~1000 Msun/yr/kpc2 (or conservatively >300 Msun/yr/kpc2).
Such a dense region is detected with S/N>40 hosted by a dwarf extending over
440 pc, dubbed D1 (Vanzella et al. 2017b). D1 is magnified by a factor
17.4+/-5.0 behind the Hubble Frontier Field galaxy cluster MACS~J0416 and
elongated tangentially by a factor 13.2+/-4.0 (including the systematic
errors). The lens model accurately reproduces the positions of the confirmed
multiple images with a r.m.s. of 0.35", and the tangential stretch is well
depicted by a giant multiply-imaged Lya arc. D1 is part of an interacting
star-forming complex extending over 800 pc. The SED-fitting, the very blue
ultraviolet slope (\beta ~ -2.5, F(\lambda) ~ \lambda^\beta) and the prominent
Lya emission of the stellar complex imply that very young (< 10-100 Myr),
moderately dust-attenuated (E(B-V)<0.15) stellar populations are present and
organised in dense subcomponents. We argue that D1 (with a stellar mass of 2 x
10^7 Msun) might contain a young massive star cluster of M < 10^6 Msun and
Muv~-15.6 (or m_uv=31.1), confined within a region of 13 pc, and not dissimilar
from some local super star clusters (SSCs). The ultraviolet appearance of D1 is
also consistent with a simulated local dwarf hosting a SSC placed at z=6 and
lensed back to the observer. This compact system fits into some popular
globular cluster formation scenarios. We show that future high spatial
resolution imaging (e.g., E-ELT/MAORY-MICADO and VLT/MAVIS) will allow us to
spatially resolve light profiles of 2-8 pc.Comment: 21 pages, 14 figures, 1 table, MNRAS accepte
All-polymer methylammonium lead iodide perovskite microcavities
open8Thanks to a high photoluminescence quantum yield, large charge carrier diffusion, and ease of processing from solution, perovskite materials are becoming increasingly interesting for flexible optoelectronic devices. However, their deposition requires wide range solvents that are incompatible with many other flexible and solution-processable materials, including polymers. Here, we show that methylammonium lead iodide (MAPbI3) films can be directly synthesized on all-polymer microcavities via simple addition of a perfluorinated layer which protects the polymer photonic structure from the perovskite processing solvents. The new processing provides microcavities with a quality factor Q = 155, that is in agreement with calculations and the largest value reported so far for fully solution processed perovskite microcavities. Furthermore, the obtained microcavity shows strong spectral and angular redistribution of the the MAPbI3 photoluminescence spectrum, which shows a 3.5 fold enhanced intensity with respect to the detuned reference. The opportunity to control and modify the emission of a MAPbI3 film via a simple spun-cast polymer structure is of great interest in advanced optoelectronic applications requiring high colour purity or emission directionality.openLova, Paola; Giusto, Paolo; Di Stasio, Francesco; Manfredi, Giovanni; Paternò, Giuseppe M; Cortecchia, Daniele; Soci, Cesare; Comoretto, DavideLova, Paola; Giusto, Paolo; DI STASIO, Francesco; Manfredi, Giovanni; Paternò, Giuseppe M; Cortecchia, Daniele; Soci, Cesare; Comoretto, David
VST - VLT Survey Telescope Integration Status
The VLT Survey Telescope (VST) is a 2.6m aperture, wide field, UV to I
facility, to be installed at the European Southern Observatory (ESO) on the
Cerro Paranal Chile. VST was primarily intended to complement the observing
capabilities of VLT with wide-angle imaging for detecting and
pre-characterising sources for further observations with the VLT.Comment: 2 pages, 2 figures, conferenc
MicroMED: an optical particle counter for the direct in situ measurement of abundance and size distribution of dust suspended in the atmosphere of Mars
The MicroMED experiment has been developed for the characterization of airborne dust close to the surface of Mars and is suitable to be accommodated on Martian landers or rovers. It is an optical particle counter, analyzing light scattered from single dust particles to measure their size and abundance. An Elegant Breadboard of the instrument has been realized and successfully tested in a Martian simulated environment. Test results demonstrate the expected functionality and performances of the experiment. <P /
GOHSS: current status and technical aspects
Abstract. We describe the current status and technical aspects of the GOHSS (Galileo OH Subtracted Spectrograph) project. In particular, we stress the most critical points and we address the innovative technical solutions implemented to fulfill the compelling requirements imposed by both the optical tolerances and the demand of a high sensitivity. The commissioning phase at the telescope is expected to begin at the end of year 2002
Deep into the core of dense star clusters: An astrometric and photometric test case for ELT
We present a novel analysis of a young star cluster in the Large Magellanic cloud, R136- like, as seen by the Extremely Large Telescope (ELT). The main aim of this study is to quantify precision and accuracy of stellar proper motion measurements in crowded field when using an ELT working at its diffraction limit. This can serve as a reference study for future development of ELT scientific cases. In particular, we investigate our future ability to detect the dynamical signature of intermediate-mass black holes (IMBHs) with mass ∼104 M⊙ through detailed measurements of stellar proper motions. We have simulated two N-body dynamical cluster models with and without an IMBH. For each model, we have chosen two snapshots temporally spaced by 5 yr. Stellar fluxes in IJHK filters and star positions have been used to create ELT mock images for both single- and multiconjugate adaptive optics observing modes following the requierements given by ESO technical specifications for the first light imager. These images have been analysed using a classical software for seeing-limited data reduction, DAOPHOT/ALLSTAR. We make accurate photometry till the very faint pre-main-sequence stars, i.e. depending on the adaptive optics (AO) mode, magnitudes down to K ∼ 24 mag (singleconjugate AO) or K ∼ 22 mag (multiconjugate AO) in a total integration time of 20 min on target. Although DAOPHOT suite of programs is not devoted to precise astrometry, the astrometric accuracy is impressive, reaching few μas yr-1 or km s-1. In these assumptions, we are able to detect the IMBH signature at the centre of the cluster
How Photogenerated I2 Induces I-Rich Phase Formation in Lead Mixed Halide Perovskites
Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I2 , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase. I2 can react with bromide (Br- ) in the perovskite to form a trihalide ion I2 Br- (Iδ- -Iδ+ -Brδ- ), whose negatively charged iodide (Iδ- ) can further exchange with another lattice Br- to form the I-rich phase. Importantly, it is observed that the effectiveness of the process is dependent on the overall stability of the crystalline perovskite structure. Therefore, the bandgap instability in LMHPs is governed by two factors, i.e., the density of native defects leading to I2 production and the Br- binding strength within the crystalline unit. Eventually, this study provides rules for the design of chemical composition in LMHPs to reach their full potential for optoelectronic devices
VST project: the adapter rotator (M1 cell)
The VLT Survey Telescope (VST) is a cooperative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The telescope design, manufacturing and integration are responsibility of OAC. The telescope is in Cassegrain configuration and for this reason the primary mirror cell represents one of the most complex telescope subsystems, designed to host a large amount of auxiliary sub-systems and to support a wide field camera. The paper describes the solutions adopted as a result of an integrated optimized optical and mechanical design
- …