87 research outputs found

    Plasmodium sexual differentiation: how to make a female

    Get PDF
    Sexual development is integral to the transmission of Plasmodium parasites between vertebrates and mosquitos. Recent years have seen great advances in understanding the gene expression that underlies commitment of asexual parasites to differentiate into sexual gametocyte stages, then how they mature and form gametes once inside a mosquito. Less well understood is how parasites differentially control development to become males or females. Plasmodium parasites are haploid at the time of sexual differentiation, but a clonal haploid line can produce both male and female gametocytes, so they presumably lack the sex‐determining alleles present in some other eukaryotes. Though the molecular switch to initiate male or female development remains hidden, recent studies reveal regulatory proteins needed for the sex‐specific maturation of male and female gametocytes. In this issue, Yuda and collaborators report the characterization of a transcription factor necessary for female gametocyte maturation. With renewed attention on malaria elimination, sex has been an increasing focus because transmission‐blocking strategies are likely to be an important component of elimination efforts

    Plasmodium sexual differentiation: how to make a female

    Get PDF
    Sexual development is integral to the transmission of Plasmodium parasites between vertebrates and mosquitos. Recent years have seen great advances in understanding the gene expression that underlies commitment of asexual parasites to differentiate into sexual gametocyte stages, then how they mature and form gametes once inside a mosquito. Less well understood is how parasites differentially control development to become males or females. Plasmodium parasites are haploid at the time of sexual differentiation, but a clonal haploid line can produce both male and female gametocytes, so they presumably lack the sex‐determining alleles present in some other eukaryotes. Though the molecular switch to initiate male or female development remains hidden, recent studies reveal regulatory proteins needed for the sex‐specific maturation of male and female gametocytes. In this issue, Yuda and collaborators report the characterization of a transcription factor necessary for female gametocyte maturation. With renewed attention on malaria elimination, sex has been an increasing focus because transmission‐blocking strategies are likely to be an important component of elimination efforts

    Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study

    Get PDF
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a major pathogenicity factor in falciparum malaria that mediates cytoadherence. PfEMP1 is encoded by approximately 60 var genes per haploid genome. Most var genes are grouped into 3 subgroups: A, B, and C. Evidence is emerging that the specific expression of these subgroups has clinical significance. Using field samples from children from Papua New Guinea with severe, mild, and asymptomatic malaria, we compared proportions of transcripts of var groups, as determined by quantitative polymerase chain reaction. We found a significantly higher proportion of var group B transcripts in children with clinical malaria (mild and severe), whereas a large proportion of var group C transcripts was found in asymptomatic children. These data from naturally infected children clearly show that major differences exist in var gene expression between parasites causing clinical disease and those causing asymptomatic infections. Furthermore, parasites forming rosettes showed a significant up-regulation of var group A transcripts

    Transcriptional variation in malaria parasites: why and how

    Get PDF
    Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt

    New Assays to Characterise Growth-Related Phenotypes of Plasmodium falciparum Reveal Variation in Density-Dependent Growth Inhibition between Parasite Lines

    Get PDF
    The growth phenotype of asexual blood stage malaria parasites can influence their virulence and also their ability to survive and achieve transmission to the next host, but there are few methods available to characterise parasite growth parameters in detail. We developed a new assay to measure growth rates at different starting parasitaemias in a 96-well format and applied it to characterise the growth of Plasmodium falciparum lines 3D7-A and 3D7-B, previously shown to have different invasion rates and to use different invasion pathways. Using this simple and accurate assay we found that 3D7-B is more sensitive to high initial parasitaemia than 3D7-A. This result indicates that different parasite lines show variation in their levels of density-dependent growth inhibition. We also developed a new assay to compare the duration of the asexual blood cycle between different parasite lines. The assay is based on the tight synchronisation of cultures to a 1 h parasite age window and the subsequent monitoring of schizont bursting and formation of new rings by flow cytometry. Using this assay we observed differences in the duration of the asexual blood cycle between parasite lines 3D7 and HB3. These two new assays will be useful to characterise variation in growth-related parameters and to identify growth phenotypes associated with the targeted deletion of specific genes or with particular genomic, transcriptomic or proteomic patterns. Furthermore, the identification of density-dependent growth inhibition as an intrinsic parasite property that varies between parasite lines expands the repertoire of measurable growth-related phenotypic traits that have the potential to influence the outcome of a malarial blood infection

    Malaria Epigenetics

    Get PDF
    Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts

    Virulence of Malaria Is Associated with Differential Expression of Plasmodium falciparum var Gene Subgroups in a Case-Control Study

    Get PDF
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a major pathogenicity factor in falciparum malaria that mediates cytoadherence. PfEMP1 is encoded by ∼60 var genes per haploid genome. Most var genes are grouped into 3 subgroups: A, B, and C. Evidence is emerging that the specific expression of these subgroups has clinical significance. Using field samples from children from Papua New Guinea with severe, mild, and asymptomatic malaria, we compared proportions of transcripts of var groups, as determined by quantitative polymerase chain reaction. We found a significantly higher proportion of var group B transcripts in children with clinical malaria (mild and severe), whereas a large proportion of var group C transcripts was found in asymptomatic children. These data from naturally infected children clearly show that major differences exist in var gene expression between parasites causing clinical disease and those causing asymptomatic infections. Furthermore, parasites forming rosettes showed a significant up-regulation of var group A transcript

    Deciphering the principles that govern mutually exclusive expression of Plasmodium falciparum clag3 genes

    Get PDF
    The product of the Plasmodium falciparum genes clag3.1 and clag3.2 plays a fundamental role in malaria parasite biology by determining solute transport into infected erythrocytes. Expression of the two clag3 genes is mutually exclusive, such that a single parasite expresses only one of the two genes at a time. Here we investigated the properties and mechanisms of clag3 mutual exclusion using transgenic parasite lines with extra copies of clag3 promoters located either in stable episomes or integrated in the parasite genome. We found that the additional clag3 promoters in these transgenic lines are silenced by default, but under strong selective pressure parasites with more than one clag3 promoter simultaneously active are observed, demonstrating that clag3 mutual exclusion is strongly favored but it is not strict. We show that silencing of clag3 genes is associated with the repressive histone mark H3K9me3 even in parasites with unusual clag3 expression patterns, and we provide direct evidence for heterochromatin spreading in P. falciparum. We also found that expression of a neighbor ncRNA correlates with clag3.1 expression. Altogether, our results reveal a scenario where fitness costs and non-deterministic molecular processes that favor mutual exclusion shape the expression patterns of this important gene family

    Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum

    Get PDF
    Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum
    corecore