4,204 research outputs found

    On wild extensions of a p-adic field

    Full text link
    In this paper we consider the problem of classifying the isomorphism classes of extensions of degree pk of a p-adic field, restricting to the case of extensions without intermediate fields. We establish a correspondence between the isomorphism classes of these extensions and some Kummer extensions of a suitable field F containing K. We then describe such classes in terms of the representations of Gal(F/K). Finally, for k = 2 and for each possible Galois group G, we count the number of isomorphism classes of the extensions whose normal closure has a Galois group isomorphic to G. As a byproduct, we get the total number of isomorphism classes

    From continuous improvement to collaborative innovation : the next challenge in supply chain management

    Full text link
    This paper considers the growing importance of inter-company collaboration, and develops the concept of intra-company continuous improvement through to what may be termed collaborative innovation between members of an extended manufacturing enterprise (EME). The importance of ICTs to such company networks is considered but research has shown that no amount of technology can overcome a lack of trust and ineffective goal setting between key partners involved in the cross-company projects. Different governance models may also impact on the success or otherwise of the network. This paper provides an overview of the main topics considered in this Special Issu

    A queima-do-broto da soja.

    Get PDF
    bitstream/item/53996/1/41.pd

    A QR based approach for the nonlinear eigenvalue problem

    Get PDF
    We describe a fast and numerically robust approach based on the structured QR eigenvalue algorithm for computing approximations of the eigenvalues of a holomorphic matrix-valued function inside the unit circle. Numerical experiments confirm the effectiveness of the proposed method

    Gershgorin disks for multiple eigenvalues of non-negative matrices

    Full text link
    Gershgorin's famous circle theorem states that all eigenvalues of a square matrix lie in disks (called Gershgorin disks) around the diagonal elements. Here we show that if the matrix entries are non-negative and an eigenvalue has geometric multiplicity at least two, then this eigenvalue lies in a smaller disk. The proof uses geometric rearrangement inequalities on sums of higher dimensional real vectors which is another new result of this paper

    In Search of Differential Inhibitors of Aldose Reductase

    Get PDF
    Aldose reductase, classified within the aldo-keto reductase family as AKR1B1, is an NADPH dependent enzyme that catalyzes the reduction of hydrophilic as well as hydrophobic aldehydes. AKR1B1 is the first enzyme of the so-called polyol pathway that allows the conversion of glucose into sorbitol, which in turn is oxidized to fructose by sorbitol dehydrogenase. The activation of the polyol pathway in hyperglycemic conditions is generally accepted as the event that is responsible for a series of long-term complications of diabetes such as retinopathy, cataract, nephropathy and neuropathy. The role of AKR1B1 in the onset of diabetic complications has made this enzyme the target for the development of molecules capable of inhibiting its activity. Virtually all synthesized compounds have so far failed as drugs for the treatment of diabetic complications. This failure may be partly due to the ability of AKR1B1 to reduce alkenals and alkanals, produced in oxidative stress conditions, thus acting as a detoxifying agent. In recent years we have proposed an alternative approach to the inhibition of AKR1B1, suggesting the possibility of a differential inhibition of the enzyme through molecules able to preferentially inhibit the reduction of either hydrophilic or hydrophobic substrates. The rationale and examples of this new generation of aldose reductase differential inhibitors (ARDIs) are presented

    Giant Anisotropic Magneto-Resistance in ferromagnetic atomic contacts

    Full text link
    Magneto-resistance is a physical effect of great fundamental and industrial interest since it is the basis for the magnetic field sensors used in computer read-heads and Magnetic Random Access Memories. As device dimensions are reduced, some important physical length scales for magnetism and electrical transport will soon be attained. Ultimately, there is a strong need to know if the physical phenomena responsible for magneto-resistance still hold at the atomic scale. Here, we show that the anisotropy of magneto-resistance is greatly enhanced in atomic size constrictions. We explain this physical effect by a change in the electronic density of states in the junction when the magnetization is rotated, as supported by our ab-initio calculations. This stems from the "spin-orbit coupling" mechanism linking the shape of the orbitals with the spin direction. This sensitively affects the conductance of atomic contacts which is determined by the overlap of the valence orbitals.Comment: latex AAMR.tex, 6 files, 5 figures, 4 pages (http://www-drecam.cea.fr/spec/articles/S06/011

    First-principles study of lattice instabilities in the ferromagnetic martensite Ni2_2MnGa

    Full text link
    The phonon dispersion relations and elastic constants for ferromagnetic Ni2_2MnGa in the cubic and tetragonally distorted Heusler structures are computed using density-functional and density-functional perturbation theory within the spin-polarized generalized-gradient approximation. For 0.9<c/a<1.060.9<c/a<1.06, the TA2_2 tranverse acoustic branch along [110][110] and symmetry-related directions displays a dynamical instability at a wavevector that depends on c/ac/a. Through examination of the Fermi-surface nesting and electron-phonon coupling, this is identified as a Kohn anomaly. In the parent cubic phase the computed tetragonal shear elastic constant, C^\prime=(C11_{11}-C12_{12})/2, is close to zero, indicating a marginal elastic instability towards a uniform tetragonal distortion. We conclude that the cubic Heusler structure is unstable against a family of energy-lowering distortions produced by the coupling between a uniform tetragonal distortion and the corresponding [110][110] modulation. The computed relation between the c/ac/a ratio and the modulation wavevector is in excellent agreement with structural data on the premartensitic (c/ac/a = 1) and martensitic (c/ac/a = 0.94) phases of Ni2_2MnGa.Comment: submitted to Phys. Rev.

    Spontaneous polarization and piezoelectric constants of III-V nitrides

    Full text link
    The spontaneous polarization, dynamical Born charges, and piezoelectric constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using the Berry phase approach to polarization in solids. The piezoelectric constants are found to be up 10 times larger than in conventional III-V's and II-VI's, and comparable to those of ZnO. Further properties at variance with those of conventional III-V compounds are the sign of the piezoelectric constants (positive as in II-VI's) and the very large spontaneous polarization.Comment: RevTeX 4 pages, improved upon revie

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte
    corecore