3,757 research outputs found

    On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces

    Full text link
    The adsorption of atomic oxygen and its inclusion into subsurface sites on Ag(210) and Ag(410) surfaces have been investigated using density functional theory. We find that--in the absence of adatoms on the first metal layer--subsurface adsorption results in strong lattice distortion which makes it energetically unfavoured. However subsurface sites are significantly stabilised when a sufficient amount of O adatoms is present on the surface. At high enough O coverage on the Ag(210) surface the mixed on-surface + subsurface O adsorption is energetically favoured with respect to the on-surface only adsorption. Instead, on the Ag(410) surface, at the coverage we have considered (3/8 ML), the existence of stable terrace sites makes the subsurface O incorporation less favourable. These findings are compatible with the results of recent HREEL experiments which have actually motivated this work.Comment: 8 pages, 4 figures and 1 tabl

    Hadronic versus leptonic origin of gamma-ray emission from supernova remnants

    Full text link
    GeV and TeV emission from the forward shocks of supernova remnants (SNRs) indicates that they are capable particle accelerators, making them promising sources of Galactic cosmic rays (CRs). However, it remains uncertain whether this Îł\gamma-ray emission arises primarily from the decay of neutral pions produced by very high energy hadrons, or from inverse-Compton and/or bremsstrahlung emission from relativistic leptons. By applying a semi-analytic approach to non-linear diffusive shock acceleration (NLDSA) and calculating the particle and photon spectra produced in different astrophysical environments, we parametrize the relative strength of hadronic and leptonic emission. We show that, even if CR acceleration is likely to occur in all SNRs, the observed photon spectra may instead primarily reflect the environment surrounding the SNR, specifically the ambient density and radiation field. We find that the most hadronic-appearing spectra are young and found in environments of high density but low radiation energy density. This study aims to guide the interpretation of current Îł\gamma-ray observations and single out the best targets of future campaigns.Comment: 9 pages, 6 figures, submitted to Ap

    Carnian (Late Triassic) C-isotope excursions, environmental changes, and biotic turnover: a global perturbation of the Earth's surface system

    Get PDF
    Here we present the second part of the special thematic issue on the Carnian Pluvial Episode (CPE). In this issue, two works on terrestrial sedimentological and floral changes linked to the CPE, and new carbon isotope records from Oman and China are presented. The papers published in this issue complement those contained in volume 175 issue 6; they altogether give an almost complete vision of the state-of-the-art about the CPE, including the many conundrums

    Random Graph-Homomorphisms and Logarithmic Degree

    Get PDF
    A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is `sub-logarithmic', then the range of such a homomorphism is super-constant. Furthermore, some examples are provided, suggesting that perhaps for graphs with super-logarithmic degree, the range of a typical homomorphism is bounded. In particular, a sharp transition is shown for a specific family of graphs C_{n,k} (which is the tensor product of the n-cycle and a complete graph, with self-loops, of size k). That is, given any function psi(n) tending to infinity, the range of a typical homomorphism of C_{n,k} is super-constant for k = 2 log(n) - psi(n), and is 3 for k = 2 log(n) + psi(n)

    Surface melting of methane and methane film on magnesium oxide

    Full text link
    Experiments on surface melting of several organic materials have shown contradictory results. We study the Van der Waals interactions between interfaces in surface melting of the bulk CH_4 and interfacial melting of the CH_4 film on the MgO substrate. This analysis is based on the theory of Dzyaloshinskii, Lifshitz, and Pitaevskii for dispersion forces in materials characterized by the frequency dependent dielectric functions. These functions for magnesium oxide and methane are obtained from optical data using an oscillator model of the dielectric response. The results show that a repulsive interaction between the solid-liquid and liquid-vapor interfaces exists for the bulk methane. We also found that the van der Waals forces between two solid-liquid interfaces are attractive for the CH_4 film on the MgO substrate. This implies that the van der Waals forces induce the presence of complete surface melting for the bulk methane and the absence of interfacial melting for CH_4 on the MgO substrate.Comment: 11 pages, 4 ps figure

    The Compositional Nature of Verb and Argument Representations in the Human Brain

    Get PDF
    How does the human brain represent simple compositions of objects, actors,and actions? We had subjects view action sequence videos during neuroimaging (fMRI) sessions and identified lexical descriptions of those videos by decoding (SVM) the brain representations based only on their fMRI activation patterns. As a precursor to this result, we had demonstrated that we could reliably and with high probability decode action labels corresponding to one of six action videos (dig, walk, etc.), again while subjects viewed the action sequence during scanning (fMRI). This result was replicated at two different brain imaging sites with common protocols but different subjects, showing common brain areas, including areas known for episodic memory (PHG, MTL, high level visual pathways, etc.,i.e. the 'what' and 'where' systems, and TPJ, i.e. 'theory of mind'). Given these results, we were also able to successfully show a key aspect of language compositionality based on simultaneous decoding of object class and actor identity. Finally, combining these novel steps in 'brain reading' allowed us to accurately estimate brain representations supporting compositional decoding of a complex event composed of an actor, a verb, a direction, and an object.Comment: 11 pages, 6 figure

    Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Full text link
    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure
    • …
    corecore