4,040 research outputs found

    The use of tethered satellites for the collection of cosmic dust and the sampling of man made orbital debris far from the space station

    Get PDF
    The use of a tethered subsatellite employed downward into the earth's upper atmosphere to an altitude of about 110 km above the earth would eliminate the orbital contamination problem while at the same time affording a measure of atmospheric braking to reduce the velocities of many particles to where they may be captured intact or nearly so with properly designed collectors. The same technique could also be used to monitor the flux of all types of man-made orbital debris out to a distance of more than a hundred kilometers in any direction from the space station. In this way the build up of any debris belt orbiting earth could be determined. The actual collecting elements used for both purposes could be of several different materials and designs so as to optimize the collection of different types of particles with different densities. Stacks of foils, films, plastics, and foams, as well as simple capture cells would be mounted in clusters around the outside of a tethered satellite and protected by iris covers until the tethered had been fully deployed. If the orientation history of the satellite were known the direction of the incoming material could be infered. A chief advantage in deploying such tethered collectors from the Space Station instead of from the shuttle is the ability to maintain deployment of the tether for days instead of hours resulting in much greater yields of intact particles and impact debris

    Separatrix Reconnections in Chaotic Regimes

    Get PDF
    In this paper we extend the concept of separatrix reconnection into chaotic regimes. We show that even under chaotic conditions one can still understand abrupt jumps of diffusive-like processes in the relevant phase-space in terms of relatively smooth realignments of stable and unstable manifolds of unstable fixed points.Comment: 4 pages, 5 figures, submitted do Phys. Rev. E (1998

    A Random Multifractal Tilling

    Full text link
    We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each nn-step there is a random choice of a parameter ρi\rho_i related to the section ratio. For the case of random choice between ρ1\rho_1 and ρ2\rho_2 we find analytically the full spectrum of fractal dimensions

    Anisotropy and percolation threshold in a multifractal support

    Full text link
    Recently a multifractal object, QmfQ_{mf}, was proposed to study percolation properties in a multifractal support. The area and the number of neighbors of the blocks of QmfQ_{mf} show a non-trivial behavior. The value of the probability of occupation at the percolation threshold, pcp_{c}, is a function of ρ\rho, a parameter of QmfQ_{mf} which is related to its anisotropy. We investigate the relation between pcp_{c} and the average number of neighbors of the blocks as well as the anisotropy of QmfQ_{mf}

    Particle formation and interaction

    Get PDF
    A wide variety of experiments can be conducted on the Space Station that involve the physics of small particles of planetary significance. Processes of interest include nucleation and condensation of particles from a gas, aggregation of small particles into larger ones, and low velocity collisions of particles. All of these processes could be investigated with a general purpose facility on the Space Station. The microgravity environment would be necessary to perform many experiments, as they generally require that particles be suspended for periods substantially longer than are practical at 1 g. Only experiments relevant to planetary processes will be discussed in detail here, but it is important to stress that a particle facility will be useful to a wide variety of scientific disciplines, and can be used to address many scientific problems

    Report on opportunities and/or techniques for high-caliber experimental research (other) proposals for SSPEX

    Get PDF
    Brief discriptions of the following 13 experiments are included: ultrahigh vacuum petrology facility; artificial comet free flyer; artificial comet (tethered); cosmic dust detector; cosmic dust collector; dust collection using tethered satellites; artificial magnetosphere; microgravity petrological studies; slitless ultraviolet spectrometer; orbital determination and capture experiment (ODACE); high velocity sputtering of amorphous silicates; particle release experiments; and calibration of gamma and X-ray remote sensingprobes

    Nonintegrable Interaction of Ion-Acoustic and Electromagnetic Waves in a Plasma

    Full text link
    In this paper we re-examine the one-dimensional interaction of electromagnetic and ion acoustic waves in a plasma. Our model is similar to one solved by Rao et al. (Phys. Fluids, vol. 26, 2488 (1983)) under a number of analytical approximations. Here we perform a numerical investigation to examine the stability of the model. We find that for slightly over dense plasmas, the propagation of stable solitary modes can occur in an adiabatic regime where the ion acoustic electric field potential is enslaved to the electromagnetic field of a laser. But if the laser intensity or plasma density increases or the laser frequency decreases, the adiabatic regime loses stability via a transition to chaos. New asymptotic states are attained when the adiabatic regime no longer exists. In these new states, the plasma becomes rarefied, and the laser field tends to behave like a vacuum field.Comment: 19 pages, REVTeX, 6 ps figures, accepted for publication in Phys. Rev.

    E-cadherin deregulation in breast cancer

    Get PDF
    E-cadherin protein (CDH1 gene) integrity is fundamental to the process of epithelial polarization and differentiation. Deregulation of the E-cadherin function plays a crucial role in breast cancer metastases, with worse prognosis and shorter overall survival. In this narrative review, we describe the inactivating mechanisms underlying CDH1 gene activity and its possible translation to clinical practice as a prognostic biomarker and as a potential targeted therapy
    corecore