88 research outputs found

    Elementary structural building blocks encountered in silicon surface reconstructions

    Full text link
    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface

    Fermi surface induced lattice distortion in NbTe2_2

    Full text link
    The origin of the monoclinic distortion and domain formation in the quasi two-dimensional layer compound NbTe2_2 is investigated. Angle-resolved photoemission shows that the Fermi surface is pseudogapped over large portions of the Brillouin zone. Ab initio calculation of the electron and phonon bandstructure as well as the static RPA susceptibility lead us to conclude that Fermi surface nesting and electron-phonon coupling play a key role in the lowering of the crystal symmetry and in the formation of the charge density wave phase

    Splitting in the Fermi surface of ZrTe_3: a surface charge density wave system

    Get PDF
    The electronic band structure and Fermi surface of ZrTe_3 was precisely determined by linearly polarized angle-resolved photoelectron spectroscopy. Several bands and a large part of the Fermi surface are found to be split by 100-200 meV into two parallel dispersions. Band structure calculations reveal that the splitting is due to a change of crystal structure near the surface. The agreement between calculation and experiment is enhanced by including the spin-orbit potential in the calculations, but the spin-orbit energy does not lead to a splitting of the bands. The dispersion of the highly nested small electron pocket that gives rise to the charge density wave is traceable even in the low-temperature gapped state, thus implying that the finite correlation length of the long-wavelength modulation leads to a smearing of the band back-folding.Comment: 8 pages, 7 figure

    Extended light scattering model incorporating coherence for thin-film silicon solar cells

    Get PDF
    We present a comprehensive scalar light-scattering model for the optical simulation of silicon thin film solar cells. The model integrates coherent light propagation in thin layers with a direct, noniterative treatment of light scattered at rough layer interfaces. The direct solution approach ensures computational efficiency, which is a key advantage for extensive calculations in the context of evaluation of different cell designs and parameter extraction. We validate the model with experimental external quantum efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well with measurements for cells deposited on both rough and flat substrates. The model is then applied to study the influence of the absorber layer thickness on the maximum achievable photocurrent for the two cell types. This efficient numerical framework will enable a quantitative model-based assessment of the optimization potential for light trapping in textured thin film silicon solar cells

    The predictive value of early behavioural assessments in pet dogs: a longitudinal study from neonates to adults

    Get PDF
    Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2–10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40–50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited

    Evolutionary Trajectory of White Spot Syndrome Virus (WSSV) Genome Shrinkage during Spread in Asia

    Get PDF
    Background - White spot syndrome virus (WSSV) is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model. Methodology/Principal Findings - We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (
    corecore