90 research outputs found

    A new kinetic model for predicting polyamide 6-6 hydrolysis and its mechanical embrittlement

    Get PDF
    PA 6-6 hydrolysis at 60, 70, 80 and 90 °C in distilled water has been studied by Fourier transform infrared spectroscopy, viscometry in molten state, differential scanning calorimetry and uniaxial tensile testing. The molar mass decreases sharply from the early periods of exposure to reach an equilibrium value of about MnE ≈ 10−11 kg mol−1 almost temperature independent. Hydrolytic chain scissions destroy the entanglement network in the amorphous phase and liberate small macromolecular segments which rearrange locally and initiate a chemicrystallisation. As expected, the embrittlement occurs at a very low conversion of the hydrolysis, in particular when the number average molar mass becomes lower than a critical value of about MnF ≈ 17 kg mol−1, i.e. very close to its initial value. A new kinetic model has been derived from the classical mechanistic scheme of reversible hydrolysis. This model describes satisfyingly all the kinetic characteristics of the reversible hydrolysis of PA 6-6 not controlled by water diffusion: decrease in molar mass, increase in crystallinity ratio and decrease in ultimate elongation, but also of other types of polyamides previously studied, such as PA 11. Moreover, when it is used as an inverse method, this model gives access to the rate constants of hydrolysis and condensation reactions. It is thus an interesting tool for elucidating structure/rate constant relationships in common families of hydrolysable polymers

    Thermal oxidation kinetics of additive free polyamide 6-6

    Get PDF
    Thermal aging of an additive free PA 6-6 has been elucidated at 90, 100, 120, 140, 150 and 160 C in airventiled ovens by Fourier transform infrared spectrophotometry, viscosimetry in molten state and uniaxial tensile testing. Oxidation of methylene groups starts after a considerably shorter induction period but reaches a lower maximal rate than in additive free PE. Cleavage of CeN bonds constitutes the main source of chain scissions. It leads to the formation of aldehyde chain-ends and a catastrophic decrease in molar mass. Embrittlement occurs at a very low conversion ratio of the oxidation process, in particular when the concentration of aldehyde chain-ends reaches a critical value of [PH¼O]F z 5.6 10 3 mol l 1, corresponding to a critical value of the number average molar mass ofMnFz17 kg mol 1. At this stage, the entanglement network in the amorphous phase is deeply damaged. A non-empirical kinetic model has been derived from the oxidation mechanistic scheme previously established for PE, but improved by adding elementary reactions specific to polyamides such as the rapid decomposition of unstable hydroxylated amide groups. This model describes satisfyingly the main features of the thermal oxidation kinetics of PA 6-6, but also of other types of aliphatic polyamides studied previously in the literature such as: PA 6, PA 12 and PA 4-6, as long as it is not controlled by oxygen diffusion. At the same time, it confirms the existence of an universal character for the thermal oxidation kinetics of aliphatic polyamides whatever their origin, i.e. their initial molar mass, crystallinity ratio, concentration of impurities, structural irregularities, etc

    Coexistence of nontrivial solutions of the one-dimensional Ginzburg-Landau equation : a computer-assisted proof

    Get PDF
    In this paper, Chebyshev series and rigorous numerics are combined to compute solutions of the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model of superconductivity. The idea is to recast solutions as fixed points of a Newton-like operator defined on a Banach space of rapidly decaying Chebyshev coefficients. Analytic estimates, the radii polynomials and the contraction mapping theorem are combined to show existence of solutions near numerical approximations. Coexistence of as many as seven nontrivial solutions is proved

    A new kinetic model for predicting polyamide 6-6 hydrolysis and its mechanical embrittlement

    Get PDF
    PA 6-6 hydrolysis at 60, 70, 80 and 90 °C in distilled water has been studied by Fourier transform infrared spectroscopy, viscometry in molten state, differential scanning calorimetry and uniaxial tensile testing. The molar mass decreases sharply from the early periods of exposure to reach an equilibrium value of about MnE ≈ 10−11 kg mol−1 almost temperature independent. Hydrolytic chain scissions destroy the entanglement network in the amorphous phase and liberate small macromolecular segments which rearrange locally and initiate a chemicrystallisation. As expected, the embrittlement occurs at a very low conversion of the hydrolysis, in particular when the number average molar mass becomes lower than a critical value of about MnF ≈ 17 kg mol−1, i.e. very close to its initial value. A new kinetic model has been derived from the classical mechanistic scheme of reversible hydrolysis. This model describes satisfyingly all the kinetic characteristics of the reversible hydrolysis of PA 6-6 not controlled by water diffusion: decrease in molar mass, increase in crystallinity ratio and decrease in ultimate elongation, but also of other types of polyamides previously studied, such as PA 11. Moreover, when it is used as an inverse method, this model gives access to the rate constants of hydrolysis and condensation reactions. It is thus an interesting tool for elucidating structure/rate constant relationships in common families of hydrolysable polymers

    Accelerated ageing method with chlorine dioxide. Application to additive free polyamide 66

    Get PDF
    With the aim to study the long-term behavior of accessories used in the tap domestic water supply system, the Centre scientifique et technique du bâtiment (CSTB) has developed a tool dedicated to accelerated ageing tests with chlorine dioxide in the experimental platform Aquasim. First studies performed with this tool show that this tap water disinfectant also attacks polymeric materials. Initially used for destroying micro-organisms, it is not totally selective since it also initiates oxidation radical chains in polymeric materials. This study is focused on additive free PA 66. Thin films samples were exposed to chlorine dioxide then characterized at different structural scales in the laboratory. One observes an oxidation and a sharp and extremely important decrease in the molar mass of PA 66 regardless the tested chlorine dioxide concentration. PA 66 embrittlement happens when the number average molar mass becomes lower than a critical value of about 17 ± 2 kg/mol. A kinetic model has been deduced from the mechanistic scheme of oxidation initiated by the radical attack of chlorine dioxide to predict, in a near future, the material lifetime. The model simulations match with experimental results

    Regards de Lucienne Forest, commissaire atypique

    Get PDF
    Vue de l’exposition Regards. © Paris Musées L’année 2018 a vu la concrétisation d’une mission inédite : le commissariat d’une exposition  à la Maison de Victor Hugo allait être assuré par un collectif d’usagers et des soignants. Cette mission fut soutenue par trois partenaires : Paris Musées, GHU Paris, psychiatrie et neurosciences, et l’association de patients et usagers de la psychiatrie – GEM Le Passage . Ce fut donc une « carte blanche » offerte au collectif de seize personnes, épaulé to..

    Blow-up profile for solutions of a fourth order nonlinear equation

    Get PDF
    It is well known that the nontrivial solutions of the equation u⁗(r)+κu″(r)+f(u(r))=0u⁗(r)+κu″(r)+f(u(r))=0 blow up in finite time under suitable hypotheses on the initial data, κκ and ff. These solutions blow up with large oscillations. Knowledge of the blow-up profile of these solutions is of great importance, for instance, in studying the dynamics of suspension bridges. The equation is also commonly referred to as extended Fisher–Kolmogorov equation or Swift–Hohenberg equation. In this paper we provide details of the blow-up profile. The key idea is to relate this blow-up profile to the existence of periodic solutions for an auxiliary equation

    Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga

    Get PDF
    Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat
    corecore