24 research outputs found

    Optical analysis of CH3NH3SnxPb1–xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells

    Get PDF
    Organic–inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3SnxPb1–xI3 films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers. According to the Shockley–Queisser theory, CH3NH3SnxPb1–xI3 compounds promise a substantial enhancement of both short circuit photocurrent and power conversion efficiency in single junction solar cells. Moreover, we propose a novel tandem architecture design in which both top and bottom cells are made of perovskite absorbers. Our calculations indicate that such perovskite-on-perovskite tandem devices could reach efficiencies over 35%. Our analysis serves to establish the first roadmap for this type of cells based on actual optical characterization data. We foresee that this study will encourage the research on novel near-infrared perovskite materials for photovoltaic applications, which may have implications in the rapidly emerging field of tandem devices.Unión Europea Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 307081 (POLIGHT)España, Ministerio de Economía y Competitividad AT2014-54852- R

    Homogenization of Halide Distribution and Carrier Dynamics in Alloyed Organic-Inorganic Perovskites

    Get PDF
    Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementary measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.Comment: updated author metadat

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Optical analysis of CH3NH3SnxPb1 xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells

    Get PDF
    Organic–inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3SnxPb1−xI3 films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers. According to the Shockley–Queisser theory, CH3NH3SnxPb1−xI3 compounds promise a substantial enhancement of both short circuit photocurrent and power conversion efficiency in single junction solar cells. Moreover, we propose a novel tandem architecture design in which both top and bottom cells are made of perovskite absorbers. Our calculations indicate that such perovskite-on-perovskite tandem devices could reach efficiencies over 35%. Our analysis serves to establish the first roadmap for this type of cells based on actual optical characterization data. We foresee that this study will encourage the research on novel near-infrared perovskite materials for photovoltaic applications, which may have implications in the rapidly emerging field of tandem devicesThe research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 307081 (POLIGHT), the Spanish Ministry of Economy and Competitiveness under grant MAT2014-54852-R. MA is grateful to “La Caixa” Foundation for its financial support. AA has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 291771. MS is supported by the co-funded Marie Skłodowska Curie fellowship, H2020 grant agreement no. 665667. FESEM characterization was performed at CITIUS, and we are grateful for its support.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Quantitative Specifications to Avoid Degradation during E-Beam and Induced Current Microscopy of Halide Perovskite Devices

    No full text
    Copyright © 2020 American Chemical Society. Degradation due to electron beam exposure has posed a challenge in the use of electron microscopy to probe halide perovskite materials and devices. In this study, the interaction between the electron beam and the perovskite across acceleration voltages and at low probe currents is investigated in a scanning electron microscope (SEM) by monitoring the electron-beam-induced current (EBIC) response in perovskite solar cells in a plan-view configuration. SEM probe conditions are identified where dozens of repeated scans over a single region of the perovskite solar cell induce minimal electronic degradation. Overall, the induced current response of the perovskite device is found to strongly depend upon the beam condition: Rapid decay occurs at high beam powers, the current activates at the lowest beam powers, and a newfound quasi-steady response is revealed at intermediate beam conditions. A quantitative window for the successful conduction of e-beam studies with minimal electronic degradation is revealed by evaluating induced current response over a wide range of perovskite devices, which invites broader use of SEM-based characterization techniques, including EBIC, as powerful techniques for correlative microscopy investigations

    Quantitative Specifications to Avoid Degradation during E-Beam and Induced Current Microscopy of Halide Perovskite Devices

    No full text
    Copyright © 2020 American Chemical Society. Degradation due to electron beam exposure has posed a challenge in the use of electron microscopy to probe halide perovskite materials and devices. In this study, the interaction between the electron beam and the perovskite across acceleration voltages and at low probe currents is investigated in a scanning electron microscope (SEM) by monitoring the electron-beam-induced current (EBIC) response in perovskite solar cells in a plan-view configuration. SEM probe conditions are identified where dozens of repeated scans over a single region of the perovskite solar cell induce minimal electronic degradation. Overall, the induced current response of the perovskite device is found to strongly depend upon the beam condition: Rapid decay occurs at high beam powers, the current activates at the lowest beam powers, and a newfound quasi-steady response is revealed at intermediate beam conditions. A quantitative window for the successful conduction of e-beam studies with minimal electronic degradation is revealed by evaluating induced current response over a wide range of perovskite devices, which invites broader use of SEM-based characterization techniques, including EBIC, as powerful techniques for correlative microscopy investigations
    corecore