472 research outputs found

    Resistive switching induced by electronic avalanche breakdown in GaTa4_4Se8x_{8-x}Tex_x narrow gap Mott Insulators

    Get PDF
    Mott transitions induced by strong electric fields are receiving a growing interest. Recent theoretical proposals have focused on the Zener dielectric breakdown in Mott insulators, however experimental studies are still too scarce to conclude about the mechanism. Here we report a study of the dielectric breakdown in the narrow gap Mott insulators GaTa4_4Se8x_{8-x}Tex_x. We find that the I-V characteristics and the magnitude of the threshold electric field (Eth_{th}) do not correspond to a Zener breakdown, but rather to an avalanche breakdown. Eth_{th} increases as a power law of the Mott Hubbard gap (Eg_g), in surprising agreement with the universal law Eth_{th} \proptoEg_g2.5^{2.5} reported for avalanche breakdown in semiconductors. However, the delay time for the avalanche that we observe in Mott insulators is over three orders of magnitude longer than in conventional semiconductors. Our results suggest that the electric field induces local insulator-to-metal Mott transitions that create conductive domains which grow to form filamentary paths across the sample

    First-Order Insulator-to-Metal Mott Transition in the Paramagnetic 3D System GaTa4Se8

    Get PDF
    The nature of the Mott transition in the absence of any symmetry braking remains a matter of debate. We study the correlation-driven insulator-to-metal transition in the prototypical 3D Mott system GaTa4Se8, as a function of temperature and applied pressure. We report novel experiments on single crystals, which demonstrate that the transition is of first order and follows from the coexistence of two states, one insulating and one metallic, that we toggle with a small bias current. We provide support for our findings by contrasting the experimental data with calculations that combine local density approximation with dynamical mean-field theory, which are in very good agreement.Comment: 5 pages and 4 figures. Supplemental material: 2 pages, 2 figure

    Dietary lipid level affects growth performance and nutrient utilisation of Senegalese sole (Solea senegalensis) juveniles

    Get PDF
    Over the last few years, several aspects of Senegalese sole (Solea senegalensis) culture have been developed and optimised but the dietary lipid level for optimal growth has never been determined. Hence, five isonitrogenous diets (56 % dietary protein) with increasing dietary lipid levels (4, 8, 12, 16 and 20 % DM) were fed to satiation to triplicate groups of twenty fish (mean initial weight 10 g). Fifteen tanks were randomly assigned one of the five diets. Feed was distributed using automatic feeders, and fish were fed over a 16-week period. At the end of the experiment the fish fed on diets containing the two lowest dietary lipid levels (4 and 8 %) showed a 3-fold body-weight increase with a significantly higher daily growth index than fish fed higher lipid levels (1-2 v. 0-8). Moreover, these fish displayed a significantly lower dry feed intake (12g/kg per d) and feed conversion ratio (1-0) compared with fish fed higher lipids levels (16-19 g/kg per d; feed conversion ratio 2-0). Low dietary lipid levels (< 12 %) significantly improved nutrient retention and gain and hence growth, without major effects on whole-body composition. Despite the slight alteration in n-3 PUFA muscle content in the fish fed low-fat-diets, this fish fed low dietary lipid still remains a rich n-3 PUFA product and generally maintained its nutritional value. These results evidenced a low lipid tolerance of Senegalese sole juveniles and suggest a maximal dietary inclusion level of 8 % lipids for both optimal growth and nutrient utilisation without compromising flesh quality.IDEIA; European fund FEDERinfo:eu-repo/semantics/publishedVersio

    Universal electric-field-driven resistive transition in narrow-gap Mott insulators

    Get PDF
    One of today's most exciting research frontier and challenge in condensed matter physics is known as Mottronics, whose goal is to incorporate strong correlation effects into the realm of electronics. In fact, taming the Mott insulator-to-metal transition (IMT), which is driven by strong electronic correlation effects, holds the promise of a commutation speed set by a quantum transition, and with negligible power dissipation. In this context, one possible route to control the Mott transition is to electrostatically dope the systems using strong dielectrics, in FET-like devices. Another possibility is through resistive switching, that is, to induce the insulator-to-metal transition by strong electric pulsing. This action brings the correlated system far from equilibrium, rendering the exact treatment of the problem a difficult challenge. Here, we show that existing theoretical predictions of the off-equilibrium manybody problem err by orders of magnitudes, when compared to experiments that we performed on three prototypical narrow gap Mott systems V2-xCrxO3, NiS2-xSex and GaTa4Se8, and which also demonstrate a striking universality of this Mott resistive transition (MRT). We then introduce and numerically study a model based on key theoretically known physical features of the Mott phenomenon in the Hubbard model. We find that our model predictions are in very good agreement with the observed universal MRT and with a non-trivial timedelay electric pulsing experiment, which we also report. Our study demonstrates that the MRT can be associated to a dynamically directed avalanche

    Magnetoelastic polarons in the hole-doped quasi-one dimensional model system Y2-xCaxBaNiO5

    Get PDF
    October 4th, 2004Charge transport in the hole-doped quasi-1D model system Y2x_{2-x}Cax_xBaNiO5_5 (x leq\\leq 0.15) is investigated in the 50-300 K temperature range. The resistivity temperature dependence is characterized by a constant activation energy Ea/kBsimE_{a}/k_{B}\\sim 1830 K at room temperature while EaE_{a} decreases upon cooling. We suggest that EaE_{a} measures the binding energy of the doped holes which form magneto-acoustic polarons when polarizing the neighboring Ni spins. A semi-classical model is proposed which allows to relate the electrical measurements and the bulk magnetic susceptibility. This model gives a picture of the spin-charge-lattice relation in this inhomogeneously doped quasi-1D system and explains its unusual one-particle charge excitation spectrum close to the Fermi level

    Magnetoelastic polarons in the hole-doped quasi-one dimensional model system Y2-xCaxBaNiO5

    Get PDF
    Charge transport in the hole-doped quasi-1D model system Y2x_{2-x}Cax_xBaNiO5_5 (x leq leq 0.15) is investigated in the 50-300 K temperature range. The resistivity temperature dependence is characterized by a constant activation energy Ea/kBsimE_{a}/k_{B} sim 1830 K at room temperature while EaE_{a} decreases upon cooling. We suggest that EaE_{a} measures the binding energy of the doped holes which form magneto-acoustic polarons when polarizing the neighboring Ni spins. A semi-classical model is proposed which allows to relate the electrical measurements and the bulk magnetic susceptibility. This model gives a picture of the spin-charge-lattice relation in this inhomogeneously doped quasi-1D system and explains its unusual one-particle charge excitation spectrum close to the Fermi level.Comment: October 4th, 200
    corecore