35 research outputs found

    Detección multiusuario para canales codificados con señales en el espacio euclidiano

    Get PDF
    Tesis (DCI)--FCEFN-UNC, 2007Propone un nuevo receptor multiusuario que es capaz de alcanzar desempeños próximos al detector óptimo sin aumentar prácticamente los tiempos de decodificación. La complejidad computacional de la nueva arquitectura es función de un parámetro particular del canal de acceso múltiple que permite considerar la información de codificación de uno, algunos o todos los usuarios, presenta ventajas incluso cuando se emplea sólo la información de codificación de un único usuario. Se desarrolla una teoría de la detección y decodificación conjunta

    A three dimensional MIMO channel model for unmanned Aerial vehicle in urban environments

    Get PDF
    Increasing the availability of Unmanned Aerial Vehicles (UAV's) platforms leads to a variety of applications for aerial exploration, surveillance, and transport. Many of these applications rely on the communication between the UAV and the ground receiver which is subjected to high mobility that may lead to restrictions on link connectivity and throughput. In order to design high throughput and efficient communication schemes for these scenarios, a deep understanding of the communication channel behavior is required, especially taking into account measurement data from flight experiments. Channel propagation in urban environments involves diffraction effects which modify the Line-of-Sight (LoS) contribution of the total received signal, especially when the receiver is located on the ground. This process leads to scenarios where Multiple-Input Multiple-Output (MIMO) signal processing can take advantage from this situation. In this context, the goal of this paper is to study the diffraction effects of the LoS component through spatial correlation metrics of the signal. To accomplish this, we propose the use of a geometric stochastic technique to model the channel behavior which lies between High Altitude Platforms (HAP) and terrestrial link communications.Fil: Mendoza, Horacio Aurelio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Efficient Parallel Carrier Recovery for Ultrahigh Speed Coherent QAM Receivers with Application to Optical Channels

    Get PDF
    This work presents a new efficient parallel carrier recovery architecture suitable for ultrahigh speed intradyne coherent optical receivers (e.g., ≥100 Gb/s) with quadrature amplitude modulation (QAM). The proposed scheme combines a novel low-latency parallel digital phase locked loop (DPLL) with a feedforward carrier phase recovery (CPR) algorithm. The new low-latency parallel DPLL is designed to compensate not only carrier frequency offset but also frequency fluctuations such as those induced by mechanical vibrations or power supply noise. Such carrier frequency fluctuations must be compensated since they lead to higher phase error variance in traditional feedforward CPR techniques, significantly degrading the receiver performance. In order to enable a parallel-processing implementation in multigigabit per second receivers, a new approximation to the DPLL computation is introduced. The proposed technique reduces the latency within the feedback loop of the DPLL introduced by parallel processing, while at the same time it provides a bandwidth and capture range close to those achieved by a serial DPLL. Simulation results demonstrate that the effects caused by frequency deviations can be eliminated with the proposed low latency parallel carrier recovery architecture.Fil: Gianni, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ferster, Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; ArgentinaFil: Corral Briones, Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hueda, Mario Rafael. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Performance of quantized random beamforming in delay-tolerant machine-type communication

    Get PDF
    Machine-to-machine (M2M) communication represents a new paradigm for mobile cellular networks, where a massive number of low-cost devices request the transfer of small amounts of data without human intervention. One option to tackle this problem is obtained by combining random beamforming (RBF) with opportunistic scheduling. RBF can be used to induce larger channel fluctuations, and opportunistic scheduling can be used to select M2M devices when their overall channel quality is good. Traditional RBF does not fulfill M2M requirements, because overall channel quality needs to be tracked continuously. In order to tackle this limitation, a novel codebook-based RBF architecture that identifies in advance the time instants in which overall channel quality should be reported, within a coherence time window, is proposed. This opportunistic feedback mechanism reduces signaling overhead and enables energy saving at M2M devices. A simplified methodology is presented to evaluate the system mean data rate, using for this purpose closed form formulas derived from SNR distribution approximations. Results reveal that the performance loss that is experienced for introducing the proposed modifications to traditional RBF scheme is negligible. The concepts analyzed in this paper provide useful insights, and show that codebook-based RBF with simplified opportunistic scheduling algorithms is an excellent combination to provide wide-area M2M services with low-cost devices and limited signaling overhead.Fil: Dowhuszko, Alexis Alfredo. Centre Tecnològic de Les Telecomunicacions de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Corral Briones, Graciela. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Hamalainen, Jyri. Aalto University; FinlandiaFil: Wichman, Risto Ilari. Aalto University; Finlandi

    Spectrum Coexistence of LEO and GSO Networks: An Interference-Based Design Criteria for LEO Inter-Satellite Links

    Get PDF
    As small satellites become more capable through miniaturized electronics and on-board processing, constellations of low-cost satellites lunched in Low- Earth Orbit (LEO) become feasible. The increase in the number of LEO satellites drives the need for frequency coexistence between the LEO constellation systems with the already existing geostationary (GSO) satellite networks. In this context, it is crucial to design the communication links paying special attention to interference analysis. This is particularly true when the LEO satellite constellation exploit inter-satellite communication links (ISL). In this paper, a radio frequency interference analysis based on simulation of the dynamic satellite constellation is presented and the design parameters of the inter-satellite links are analyzed. The results suggest that carefully choosing the design parameters of the intersatellite links, spectrum coexistence of LEO and GSO networks may be possible.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Spectrum Coexistence of LEO and GSO Networks: An Interference-Based Design Criteria for LEO Inter-Satellite Links

    Get PDF
    As small satellites become more capable through miniaturized electronics and on-board processing, constellations of low-cost satellites lunched in Low- Earth Orbit (LEO) become feasible. The increase in the number of LEO satellites drives the need for frequency coexistence between the LEO constellation systems with the already existing geostationary (GSO) satellite networks. In this context, it is crucial to design the communication links paying special attention to interference analysis. This is particularly true when the LEO satellite constellation exploit inter-satellite communication links (ISL). In this paper, a radio frequency interference analysis based on simulation of the dynamic satellite constellation is presented and the design parameters of the inter-satellite links are analyzed. The results suggest that carefully choosing the design parameters of the intersatellite links, spectrum coexistence of LEO and GSO networks may be possible.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A Method to Shorten Signals in SM-OFDM

    Get PDF
    Spatial modulation (SM) added to traditional OFDM communications has been intensively studied as a candidate transmission method to convey high-speed, low-delay, powerefficient and high-mobility 5G communications in a reliable basis. This approach implies the use of multiple antennas at the transmitter. Then, the fundamental aspect revised in this work takes into account that in a single-carrier SM system, the selection of the active transmit antenna according to (part of) the information bits makes it possible to use a single power amplifier (PA) that is switched among the available antennas. On the other hand, in a conventional SM-OFDM system, every antenna needs to be continuously active as the index information is typically different for each subcarrier. Consequently, we propose a transmission scheme that precodes the information symbols in frequency domain, such that the global symbol period is split into partitions that enable a sequential operation of antennas which can be fed by a single PA. In addition, it is possible to establish that the proposed approach tends to be more robust against disturbances observed in high mobility environments.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A Method to Shorten Signals in SM-OFDM

    Get PDF
    Spatial modulation (SM) added to traditional OFDM communications has been intensively studied as a candidate transmission method to convey high-speed, low-delay, powerefficient and high-mobility 5G communications in a reliable basis. This approach implies the use of multiple antennas at the transmitter. Then, the fundamental aspect revised in this work takes into account that in a single-carrier SM system, the selection of the active transmit antenna according to (part of) the information bits makes it possible to use a single power amplifier (PA) that is switched among the available antennas. On the other hand, in a conventional SM-OFDM system, every antenna needs to be continuously active as the index information is typically different for each subcarrier. Consequently, we propose a transmission scheme that precodes the information symbols in frequency domain, such that the global symbol period is split into partitions that enable a sequential operation of antennas which can be fed by a single PA. In addition, it is possible to establish that the proposed approach tends to be more robust against disturbances observed in high mobility environments.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Spectrum Coexistence of LEO and GSO Networks: An Interference-Based Design Criteria for LEO Inter-Satellite Links

    Get PDF
    As small satellites become more capable through miniaturized electronics and on-board processing, constellations of low-cost satellites lunched in Low- Earth Orbit (LEO) become feasible. The increase in the number of LEO satellites drives the need for frequency coexistence between the LEO constellation systems with the already existing geostationary (GSO) satellite networks. In this context, it is crucial to design the communication links paying special attention to interference analysis. This is particularly true when the LEO satellite constellation exploit inter-satellite communication links (ISL). In this paper, a radio frequency interference analysis based on simulation of the dynamic satellite constellation is presented and the design parameters of the inter-satellite links are analyzed. The results suggest that carefully choosing the design parameters of the intersatellite links, spectrum coexistence of LEO and GSO networks may be possible.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore