154 research outputs found

    Five-year review of an international clinical research-training program

    Get PDF
    The exponential increase in clinical research has profoundly changed medical sciences. Evidence that has accumulated in the past three decades from clinical trials has led to the proposal that clinical care should not be based solely on clinical expertise and patient values, and should integrate robust data from systematic research. As a consequence, clinical research has become more complex and methods have become more rigorous, and evidence is usually not easily translated into clinical practice. Therefore, the instruction of clinical research methods for scientists and clinicians must adapt to this new reality. To address this challenge, a global distance-learning clinical research-training program was developed, based on collaborative learning, the pedagogical goal of which was to develop critical thinking skills in clinical research. We describe and analyze the challenges and possible solutions of this course after 5 years of experience (2008-2012) with this program. Through evaluation by students and faculty, we identified and reviewed the following challenges of our program: 1) student engagement and motivation, 2) impact of heterogeneous audience on learning, 3) learning in large groups, 4) enhancing group learning, 5) enhancing social presence, 6) dropouts, 7) quality control, and 8) course management. We discuss these issues and potential alternatives with regard to our research and background

    Five-year review of an international clinical research-training program

    Get PDF
    The exponential increase in clinical research has profoundly changed medical sciences. Evidence that has accumulated in the past three decades from clinical trials has led to the proposal that clinical care should not be based solely on clinical expertise and patient values, and should integrate robust data from systematic research. As a consequence, clinical research has become more complex and methods have become more rigorous, and evidence is usually not easily translated into clinical practice. Therefore, the instruction of clinical research methods for scientists and clinicians must adapt to this new reality. To address this challenge, a global distance-learning clinical research-training program was developed, based on collaborative learning, the pedagogical goal of which was to develop critical thinking skills in clinical research. We describe and analyze the challenges and possible solutions of this course after 5 years of experience (2008-2012) with this program. Through evaluation by students and faculty, we identified and reviewed the following challenges of our program: 1) student engagement and motivation, 2) impact of heterogeneous audience on learning, 3) learning in large groups, 4) enhancing group learning, 5) enhancing social presence, 6) dropouts, 7) quality control, and 8) course management. We discuss these issues and potential alternatives with regard to our research and background

    More resistant tendons obtained from the association of Heteropterys aphrodisiaca and endurance training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Popular Brazilian medicine uses <it>Heteropterys aphrodisiaca </it>infusion as a tonic or stimulant, for the treatment of nervous debility and breakdown and for muscle and bone weakness. This study investigated the effects of <it>Heteropterys aphrodisiaca </it>infusion on the tendon properties and extracellular matrix of rats under endurance training.</p> <p>Methods</p> <p>Wistar rats were grouped as follows: CS- control sedentary, HS- <it>H. aphrodisiaca </it>sedentary, CT-control trained, HT- <it>H. aphrodisiaca </it>trained. The training protocol consisted in running on a motorized treadmill, five times a week, with weekly increase in treadmill speed and duration. Control groups received water while the HS and HT groups received <it>H. aphrodisiaca </it>infusion, daily, by gavage for the 8 weeks of training. Achilles tendons were frozen for biochemical and biomechanical analysis or preserved in Karnovsky's fixative, then processed for histomorphological analysis with light microscopy.</p> <p>Results</p> <p>Biomechanical analysis showed significant increase in maximum load, maximum stress, modulus of elasticity and stiffness of the HT animals' tendons. The metalloproteinase-2 activity was reduced in the HT group. The compression region of HT animals' tendons had a stronger and more intense metachromasy, which suggests an increase in glycosaminoglycan concentration in this region of the tendon. The most intense birefringence was observed in both compression and tension regions of HT animals' tendons, which may indicate a higher organizational level of collagen bundles. The hydroxyproline content increased in the HT group.</p> <p>Conclusions</p> <p>The association of endurance training with <it>H. aphrodisiaca </it>resulted in more organized collagen bundles and more resistant tendons to support higher loads from intense muscle contraction. Despite the clear anabolic effects of <it>Heteropterys aphrodisiaca </it>and the endurance exercise association, no side effects were observed, such as those found for synthetic anabolic androgenic steroids.</p

    Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better?

    Get PDF
    In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm2, 100 s irradiation per point, 5 J, 1,785 J/cm2 at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts
    • 

    corecore