689 research outputs found

    Infrared observations of the candidate double neutron star system PSR J1811-1736

    Get PDF
    PSR J1811-1736 (P=104 ms) is an old (~1.89 Gyrs) binary pulsar (P_orb=18.8 d) in a highly eccentric orbit (e=0.828) with an unidentified companion. Interestingly enough, the pulsar timing solution yields an estimated companion mass 0.93 M_{\odot}<M_C<1.5 M_{\odot}, compatible with that of a neutron star. As such, it is possible that PSR J1811-1736 is a double neutron star (DNS) system, one of the very few discovered so far. This scenario can be investigated through deep optical/infrared (IR) observations. We used J, H, K-band images, obtained as part of the UK Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS), and available in the recent Data Release 9 Plus, to search for its undetected companion of the PSR J1811-1736 binary pulsar. We detected a possible companion star to PSR J1811-1736 within the 3 sigma radio position uncertainty (1.32 arcsec), with magnitudes J=18.61+/-0.07, H=16.65+/-0.03, and K=15.46+/-0.02. The star colours are consistent with either a main sequence (MS) star close to the turn-off or a lower red giant branch (RGB) star, at a pulsar distance of ~5.5 kpc and with a reddening of E(B-V)~4.9. The star mass and radius would be compatible with the constraints on the masses and orbital inclination of the binary system inferred from the mass function and the lack of radio eclipses near superior conjunction. Thus, it is possible that it is the companion to PSR J1811-1736. However, based on the star density in the field, we estimated a quite large chance coincidence probability of ~0.27 between the pulsar and the star, which makes the association unlikely. No other star is detected within the 3 sigma pulsar radio position down to J~20.5, H~19.4$ and K~18.6, which would allow us to rule out a MS companion star earlier than a mid-to-late M spectral type.Comment: 10 pages, 6 figures, accepted for publication on Monthly Notices of the Royal Astronomical Societ

    Gemini optical observations of binary millisecond-pulsars

    Get PDF
    Milli-second pulsars (MSPs) are rapidly spinning neutron stars, with spin periods P_s <= 10 ms, which have been most likely spun up after a phase of matter accretion from a companion star. In this work we present the results of the search for the companion stars of four binary milli-second pulsars, carried out with archival data from the Gemini South telescope. Based upon a very good positional coincidence with the pulsar radio coordinates, we likely identified the companion stars to three MSPs, namely PSRJ0614-3329 (g=21.95 +- 0.05), J1231-1411 (g=25.40 +-0.23), and J2017+0603 (g=24.72 +- 0.28). For the last pulsar (PSRJ0613-0200) the identification was hampered by the presence of a bright star (g=16 +- 0.03) at \sim 2" from the pulsar radio coordinates and we could only set 3-sigma upper limits of g=25.0, r= 24.3, and i= 24.2 on the magnitudes of its companion star. The candidate companion stars to PSRJ0614-3329, J1231-1411, and J2017+0603 can be tentatively identified as He white dwarfs (WDs) on the basis of their optical colours and brightness and the comparison with stellar model tracks. From the comparison of our multi-band photometry with stellar model tracks we also obtained possible ranges on the mass, temperature, and gravity of the candidate WD companions to these three MSPs. Optical spectroscopy observations are needed to confirm their possible classification as He WDs and accurately measure their stellar parameters.Comment: 17 pages, 7 figures, 6 tables, accepted for publication in MNRA

    Constraining population synthesis models via the binary neutron star population

    Full text link
    The observed sample of double neutron-star (NS-NS) binaries presents a challenge to population-synthesis models of compact object formation: the parameters entering into these models must be carefully chosen so as to match (i) the observed star formation rate and (ii) the formation rate of NS-NS binaries, which can be estimated from the observed sample and the selection effects related to the discoveries with radio-pulsar surveys. In this paper, we select from an extremely broad family of possible population synthesis models those few (2%) which are consistent with the observed sample of NS-NS binaries. To further sharpen the constraints the observed NS-NS population places upon our understanding of compact-object formation processes, we separate the observed NS-NS population into two channels: (i) merging NS-NS binaries, which will inspiral and merge through the action of gravitational waves within 1010 Gyr, and (ii) wide NS-NS binaries, consisting of all the rest. With the subset of astrophysically consistent models, we explore the implications for the rates at which double black hole (BH-BH), black hole-neutron star (BH-NS), and NS-NS binaries will merge through the emission of gravitational waves.Comment: (v1) Submitted to ApJ. Uses emulateapj.cls. 8 pages, 7 figures. (v2) Minor textual changes in response to referee queries. Substantial additions in appendicies, including a detailed discussion of sample multidimensional population synthesis fit

    CLASSIFICATION OF RAILWAY ASSETS IN MOBILE MAPPING POINT CLOUDS

    Get PDF

    DATA INTEGRATION OF DIFFERENT DOMAINS IN GEO-INFORMATION MANAGEMENT: A RAILWAY INFRASTRUCTURE CASE STUDY

    Get PDF
    A 3D city model is a representation of an urban environment with a three-dimensional geometry of common urban objects and structures, with buildings as the most prominent feature. In the last decades, 3D city models appear to have been predominantly used for visualisation; however, nowadays they are being increasingly employed in a number of domains and for a broad range of tasks beyond visualisation. The MUIF (Modello Unico dell’Infrastruttura Fisica) project, here illustrated as a case study, refers to the implementation of a single spatial model of the infrastructure of Italy’s railway system (RFI). The authors describe preliminary results and the critical aspects of the study they are carrying out, explaining the processes and methodology to model all datasets into a single integrated spatial model as the reference base for future continuously updates. The case study refers to data collected by different sources and at various resolutions. An integrated spatial Database has been used for modelling topographic 3D objects, traditionally implemented in a 3D city model, as well as other specific 3D objects, related to the railway infrastructure that, usually, aren’t modelled in a 3D city model, following the same methodology as the first ones.</p
    • …
    corecore