133 research outputs found

    Modulation Transfer Spectroscopy of the D1 Transition of Potassium: Theory and Experiment

    Full text link
    We report on a study of modulation transfer spectroscopy of the 4S1/2→4P1/24\textrm{S}_{1/2}\rightarrow 4\textrm{P}_{1/2} (D1D_{1}) transition of naturally abundant potassium in a room-temperature vapour cell. This transition is critical for laser cooling and optical pumping of potassium and our study is therefore motivated by the need for robust laser frequency stabilisation. Despite the absence of a closed transition, the small ground-state hyperfine splitting in potassium results in strong crossover features in the D1D_{1} modulation transfer spectrum. To emphasise this we compare the D1D_{1} and D2D_{2} spectra of potassium with those of rubidium. Further, we compare our experimental results with a detailed theoretical simulation, examining different pump-probe polarization configurations to identify the optimal signals for laser frequency stabilisation. We find good agreement between the experiment and the theory, especially for the lin∥lin\textrm{lin} \parallel \textrm{lin} polarization configuration

    Long-distance optical-conveyor-belt transport of ultracold 133 Cs and 87 Rb atoms

    Get PDF
    We report on the transport of a thermal cloud of ultracold cesium and rubidium atoms over about 37 cm in under 25 ms using an optical conveyor belt formed by two counterpropagating beams with a controllable frequency difference that generate a movable optical lattice. By carefully selecting the waists and focus positions, we are able to use two static Gaussian beams for the transport, avoiding the need for a Bessel beam or variable-focus lenses. We characterize the transport efficiency for both species, including a comparison of different transport trajectories, gaining insight into the loss mechanisms and finding the minimum jerk trajectory to be optimum. Using the optimized parameters, we are able to transport up to 7×106 cesium or rubidium atoms with an efficiency up to 75%. To demonstrate the viability of our transport scheme for experiments employing quantum gas microscopy, we produce Bose-Einstein condensates of either species after transport and present measurements of the simultaneous transport of both species

    A dental stool with chest support reduces lower back muscle activation

    Get PDF
    Activation of back musculature during work tasks leads to fatigue and potential injury. This is especially prevalent in dentists who perform much of their work from a seated position. We examined the use of an ergonomic dental stool with mid-sternum chest support for reducing lower back muscle activation. Electromyography of lower back extensors was assessed from 30 dental students for 20 s during three conditions in random order: (a) sitting upright at 90° of hip flexion on a standard stool, (b) leaning forward at 80° of hip flexion on a standard stool, and (c) leaning forward at 80° of hip flexion while sitting on an ergonomic stool. Muscular activity of the back extensors was reduced when using the ergonomic stool compared to the standard stool, by 33-50% (p < 0.01). This suggests a potential musculoskeletal benefit with use of a dental stool with mid-sternum chest support

    Synthesis and characterisation of halide, separated ion pair, and hydride cyclopentadienyl iron bis(diphenylphosphino)ethane derivatives

    Get PDF
    Treatment of anhydrous FeX₂ (X = Cl, Br, I) with one equivalent of bis(diphenylphosphino)ethane (dppe) in refluxing THF afforded analytically pure white (X = Cl), light green (X = Br), and yellow (X = I) [FeX₂(dppe)]n (X = Cl, I; Br, II; I, III). Complexes I–III are excellent synthons from which to prepare a range of cyclopentadienyl derivatives. Specifically, treatment of I–III with alkali metal salts of C₅H₅ (Cp, series 1), C₅Me₅ (Cp*, series 2), C₅H₄SiMe₃ (Cp′, series 3), C₅H₃(SiMe₃)₂ (Cp′′, series 4), and C₅H₃(But)₂ (Cptt, series 5) afforded [Fe(Cp†)(Cl)(dppe)] 1Cl–5Cl, [Fe(Cp†)(Br)(dppe)] 1Br–5Br, and [Fe(Cp†)(I)(dppe)] 1I–5I (Cp† = Cp, Cp*, Cp′, Cp′′, or Cptt). Dissolution of 1I–5I in acetonitrile, or treatment of 1Cl–5Cl with Me₃SiI in acetonitrile (no halide exchange reactions were observed in other solvents) afforded the separated ion pair complexes [Fe(Cp†)(NCMe)(dppe)][I] 1SIP–5SIP. Attempts to reduce 1Cl–5Cl, 1Br–5Br, and 1I–5I with a variety of reductants (Li-Cs, KC₈, Na/Hg) were unsuccessful. Treatment of 1Cl–5Cl with LiAlH₄ gave the hydride derivatives [Fe(Cp†)(H)(dppe)] 1H–5H. This report provides a systematic account of reliable methods of preparing these complexes which may find utility in molecular wire and metal–metal bond chemistries. The complexes reported herein have been characterised by X-ray diffraction, NMR, IR, UV/Vis, and Mössbauer spectroscopies, cyclic voltammetry, density functional theory calculations, and elemental analyses, which have enabled us to elucidate the electronic structure of the complexes and probe the variation of iron redox properties as a function of varying the cyclopentadienyl or halide ligand

    Initial conditions for hybrid inflation

    Full text link
    In hybrid inflation models, typically only a tiny fraction of possible initial conditions give rise to successful inflation, even if one assumes spatial homogeneity. We analyze some possible solutions to this initial conditions problem, namely assisted hybrid inflation and hybrid inflation on the brane. While the former is successful in achieving the onset of inflation for a wide range of initial conditions, it lacks sound physical motivation at present. On the other hand, in the context of the presently much discussed brane cosmology, extra friction terms appear in the Friedmann equation which solve this initial conditions problem in a natural way.Comment: 6 pages RevTeX file with four figures incorporated (uses RevTeX and epsf). Updates to match accepted versio

    Does abscisic acid affect strigolactone biosynthesis?

    Get PDF
    Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. * • The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. * • The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Signatures of TOP1 transcription-associated mutagenesis in cancer and germline

    Get PDF
    The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4—a cancer insertion–deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions —is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.We thank S. Jinks-Robertson for suggesting the traffic light reporter approach; H. Klein for guidance on fluctuation assays; R. van Boxtel for sharing sequencing data for MLH1-KO organoids; A. Bretherick, O. B. Reina and G. Kudla for advice on HygroR re-coding; staff at the IGC core services (L. Murphy, C. Nicol, C. Warnock, E. Freyer, S. Brown and J. Joseph), C. Logan, A. Fluteau, A. Robertson and the staff at Edinburgh Genomics for technical assistance; staff at Liverpool CLL Biobank (funded by Blood Cancer UK) for samples used to generate GEL WGS data; A. Ewing, C.-A. Martin, N. Hastie and W. Bickmore for discussions. Funding for this work: UK Medical Research Council Human Genetics Unit core grants (MC_UU_00007/5 to A.P.J., MC_UU_00007/11 to M.S.T.); Edinburgh Clinical Academic Track PhD programme (Wellcome Trust 204802/Z/16/Z) to T.C.W.; 2021 AACR-Amgen Fellowship in Clinical/Translational Cancer Research (grant number 21-40-11-NADE) to F.N.; a CRUK Brain Tumour Centre of Excellence Award (C157/A27589) to M.D.N.; EKFS research grant (2019_A09), Wilhelm Sander-Stiftung (2019.046.1) to K.A., CRUK programme grant (C20807/A2864) to T.S.; La Caixa Foundation (CLLEvolution-LCF/PR/HR17/52150017, Health Research 2017 Program HR17-00221) to E.C.; E.C. is an Academia Researcher of the Institució Catalana de Recerca i Estudis Avançats of the Generalitat de Catalunya. Edinburgh Genomics is partly supported by NERC (R8/H10/56), MRC (MR/K001744/1) and BBSRC (BB/J004243/1). This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support.Peer Reviewed"Article signat per 22 autors/es: Martin A. M. Reijns, David A. Parry, Thomas C. Williams, Ferran Nadeu, Rebecca L. Hindshaw, Diana O. Rios Szwed, Michael D. Nicholson, Paula Carroll, Shelagh Boyle, Romina Royo, Alex J. Cornish, Hang Xiang, Kate Ridout, The Genomics England Research Consortium, Colorectal Cancer Domain UK 100,000 Genomes Project, Anna Schuh, Konrad Aden, Claire Palles, Elias Campo, Tatjana Stankovic, Martin S. Taylor & Andrew P. Jackson "Postprint (published version

    Signatures of TOP1 transcription-associated mutagenesis in cancer and germline

    Get PDF
    The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4—a cancer insertion–deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions —is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome
    • …
    corecore