468 research outputs found

    Quasiperiodic emissions observed by the Cluster spacecraft and their association with ULF magnetic pulsations

    Get PDF
    International audience[1] Quasiperiodic (QP) emissions are electromagnetic waves at frequencies of about 0.5–4 kHz characterized by a periodic time modulation of the wave intensity, with a typical modulation period on the order of minutes. We present results of a survey of QP emissions observed by the Wide-Band Data (WBD) instruments on board the Cluster spacecraft. All WBD data measured in the appropriate frequency range during the first 10 years of operation (2001–2010) at radial distances lower than 10 R E were visually inspected for the presence of QP emissions, resulting in 21 positively identified events. These are systematically analyzed, and their frequency ranges and modulation periods are determined. Moreover, a detailed wave analysis has been done for the events that were strong enough to be seen in low-resolution Spatio-Temporal Analysis of Field Fluctuations-Spectrum Analyzer data. Wave vectors are found to be nearly field-aligned in the equatorial region, but they become oblique at larger geomagnetic latitudes. This is consistent with a hypothesis of unducted propagation. ULF magnetic field pulsations were detected at the same time as QP emissions in 4 out of the 21 events. They were polarized in the plane perpendicular to the ambient magnetic field, and their frequencies roughly corresponded to the modulation period of the QP events. Citation: Němec , F., O. Santolík, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2013), Quasiperiodic emissions observed by the Cluster spacecraft and their association with ULF magnetic pulsations

    Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves

    Get PDF
    Observations of equatorial magnetosonic waves made during the Cluster I nnerMagnetospheric Campaign clearly show discrete spectra consisting of emissions around harmonics of theproton gyrofrequency. Equatorial magnetosonic waves are important because of their ability to efficientlyscatter electrons in energy and pitch angle. This wave-particle interaction is numerically modeled throughthe use of diffusion coefficients, calculated based on a continuous spectrum such as that observed byspectrum analyzers. Using the Chirikov overlap resonance criterion, the calculation of the diffusioncoefficient will be assessed to determine whether they should be calculated based on the discrete spectralfeatures as opposed to a continuous spectrum. For the period studied, it is determined that the discretenature of the waves does fulfill the Chirikov overlap criterion and so the use of quasi-linear theory with theassumption of a continuous frequency spectrum is valid for the calculation of diffusion coefficients

    Scaling of the electron dissipation range of solar wind turbulence

    Full text link
    Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 years of the Cluster search-coil magnetometer (SCM) waveforms measured in the solar wind and perform a statistical study of the magnetic energy spectra in the frequency range [1,1801, 180]Hz. We show that a large fraction of the spectra exhibit clear breakpoints near the electon gyroscale ρe\rho_e, followed by steeper power-law like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that will be discussed in detail. We compare our results to recent ones reported in other studies and discuss their implication on the physical mechanisms and the theoretical modeling of energy dissipation in the SW.Comment: 10 pages, submitte

    Identification of broad-band waves above the auroral acceleration region: Cluster observations

    Get PDF
    We investigate broad-band emissions at frequencies above the ion gyrofrequency on auroral field lines at geocentric distances of about 4.5 Earth radii. Observations by the Cluster satellites are used to study the wave characteristics and to determine the wave modes involved. All events include some bursts of broad-band emissions with a substantial component of the electric field parallel to the geomagnetic field. Studying the polarization of the emissions we find that linear waves in a homogeneous plasma can be used to theoretically describe the observations. </p><p style="line-height: 20px;"> The broad-band emissions include short bursts of ion acoustic waves, and longer periods of ion Bernstein and Electrostatic Ion Cyclotron (EIC) waves. All waves occur during the same event within a few seconds, with EIC waves as the most common. Theoretically, there is no sharp limit between these wave modes and they can be described by the same dispersion surface. These emissions are closely associated with low-frequency Alfvén waves, indicating a possible generation mechanism.<br><br> <b>Key words.</b> Magnetospheric physics (auroral phenomena; electric fields; plasma waves and instabilities

    Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Get PDF
    On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation) the high-altitude (10 <i>R<sub>E</sub></i>) cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame). Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected

    Whistler mode waves and the electron heat flux in the solar wind: Cluster observations

    Full text link
    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f[1,400]f\in[1,400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In 10%\sim 10\% of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of these waves varies between a few seconds and several hours. Here we present, for the first time, an analysis of long-lived whistler waves, i.e. lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of the background turbulence, a slow wind, a relatively large electron heat flux and a low electron collision frequency. When the electron parallel beta factor βe\beta_{e\parallel} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for βe\beta_{e\parallel} \ge 3, in the slow wind, at 1 AU.Comment: The Astrophysical Journal, 2014, in pres

    Single-event upsets in the Cluster and Double Star Digital Wave Processor instruments

    Get PDF
    Radiation-induced upsets are an important issue for electronic circuits operating in space. Upsets due to solar protons, trapped protons, and galactic cosmic rays are frequently observed. Modeling the expected frequency of upsets is a necessary part of the design process for space hardware. The Cluster and Double Star spacecraft were respectively European and Chinese missions dedicated to the study of the wave and particle environment in the Earth's magnetosphere. All four Cluster spacecraft and one Double Star spacecraft included a Digital Wave Processor (DWP) instrument. The primary purpose of this instrument was as the central controller of the Wave Experiment Consortium. This paper investigates the occurrence of radiation-induced single-event upsets in these DWP instruments. The memory devices used in the DWP were not specifically radiation-hardened parts and so are relatively sensitive to single-event effects. We present the experience gained during the first 11 years of operation of the Cluster mission and the nearly 4 year lifetime of the Double Star TC-1 spacecraft and compare with models of the radiation environment
    corecore