688 research outputs found

    Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control

    Get PDF
    Standard virulence evolution theory assumes that virulence factors are maintained because they aid parasitic exploitation, increasing growth within and/or transmission between hosts. An increasing number of studies now demonstrate that many opportunistic pathogens (OPs) do not conform to these assumptions, with virulence factors maintained instead because of advantages in non-parasitic contexts. Here we review virulence evolution theory in the context of OPs and highlight the importance of incorporating environments outside a focal virulence site. We illustrate that virulence selection is constrained by correlations between these external and focal settings and pinpoint drivers of key environmental correlations, with a focus on generalist strategies and phenotypic plasticity. We end with a summary of key theoretical and empirical challenges to be met for a fuller understanding of OPs

    Synergy and Group Size in Microbial Cooperation

    Get PDF
    Microbes produce many molecules that are important for their growth and development, and the consumption of these secretions by nonproducers has recently become an important paradigm in microbial social evolution. Though the production of these public goods molecules has been studied intensely, little is known of how the benefits accrued and costs incurred depend on the quantity of public good molecules produced. We focus here on the relationship between the shape of the benefit curve and cellular density with a model assuming three types of benefit functions: diminishing, accelerating, and sigmoidal (accelerating then diminishing). We classify the latter two as being synergistic and argue that sigmoidal curves are common in microbial systems. Synergistic benefit curves interact with group sizes to give very different expected evolutionary dynamics. In particular, we show that whether or not and to what extent microbes evolve to produce public goods depends strongly on group size. We show that synergy can create an “evolutionary trap” which can stymie the establishment and maintenance of cooperation. By allowing density dependent regulation of production (quorum sensing), we show how this trap may be avoided. We discuss the implications of our results for experimental design

    A comparison of model ensembles for attributing 2012 West African rainfall

    Get PDF
    In 2012, heavy rainfall resulted in flooding and devastating impacts across West Africa. With many people highly vulnerable to such events in this region, this study investigates whether anthropogenic climate change has influenced such heavy precipitation events. We use a probabilistic event attribution approach to assess the contribution of anthropogenic greenhouse gas emissions, by comparing the probability of such an event occurring in climate model simulations with all known climate forcings to those where natural forcings only are simulated. An ensemble of simulations from 10 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) is compared to two much larger ensembles of atmosphere-only simulations, from the Met Office model HadGEM3-A and from weather@home with a regional version of HadAM3P. These are used to assess whether the choice of model ensemble influences the attribution statement that can be made. Results show that anthropogenic greenhouse gas emissions have decreased the probability of high precipitation across most of the model ensembles. However, the magnitude and confidence intervals of the decrease depend on the ensemble used, with more certainty in the magnitude in the atmosphere-only model ensembles due to larger ensemble sizes from single models with more constrained simulations. Certainty is greatly decreased when considering a CMIP5 ensemble that can represent the relevant teleconnections due to a decrease in ensemble members. An increase in probability of high precipitation in HadGEM3-A using the observed trend in sea surface temperatures (SSTs) for natural simulations highlights the need to ensure that estimates of natural SSTs are consistent with observed trends in order for results to be robust. Further work is needed to establish how anthropogenic forcings are affecting the rainfall processes in these simulations in order to better understand the differences in the overall effect

    Detection of chromosomal inversions using non-repetitive nucleic acid probes

    Get PDF
    A method for the identification of chromosomal inversions is described. Single-stranded sister chromatids are generated, for example by CO-FISH. A plurality of non-repetitive, labeled probes of relatively small size are hybridized to portions of only one of a pair of single-stranded sister chromatids. If no inversion exists, all of the probes will hybridize to a first chromatid. If an inversion has occurred, these marker probes will be detected on the sister chromatid at the same location as the inversion on the first chromatid

    Pregnancies associated with etonogestrel implants in the UK: comparison of two 5-year reporting periods.

    Get PDF
    OBJECTIVES: (1) To identify pregnancies associated with the use of the contraceptive implants Implanon and Nexplanon in the UK during two 5-year reporting periods. (2) To classify the possible reasons for device failure in cases reported for each implant. (3) To examine any differences between reasons for pregnancies associated with these products. STUDY DESIGN: Extraction of data from the UK spontaneous reporting system for adverse drug reactions in relation to etonogestrel implants. Reports indicating pregnancy were identified for the periods 2005-2009 (Implanon) and 2012-2016 (Nexplanon). Possible reasons for failure of the method in each reported case were assigned to one of eight predetermined categories. RESULTS: After exclusions, 229 Implanon and 234 Nexplanon cases contained sufficient information for analysis. True method failures accounted for a majority of the pregnancies in those using contraceptive implants (58%); the next most common cause was missing implants (26% of pregnancies). In all categories of cases, there was no difference in frequency of pregnancy when the two time periods were compared. CONCLUSIONS: There is still potential for greater avoidance of pregnancies associated with etonogestrel implant use. IMPLICATIONS: This study underscores the continuing need for taking a full drug history, timing the insertion on days 1-5 or according to recommended quick starting routines and palpating the arm after implant insertion

    Overview of NASARTI (NASA Radiation Track Image) Program: Highlights of the Model Improvement and the New Results

    Get PDF
    This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented

    Detection of Chromosomal Inversions Using Non-Repetitive Nucleic Acid Probes

    Get PDF
    A method and a kit for the identification of chromosomal inversions are described. Single-stranded sister chromatids are generated, for example by CO-FISH. A plurality of non-repetitive, labeled probes of relatively small size are hybridized to portions of only one of a pair of single-stranded sister chromatids. If no inversion exists, all of the probes will hybridize to a first chromatid. If an inversion has occurred, these marker probes will be detected on the sister chromatid at the same location as the inversion on the first chromatid

    No increase in radiation-induced chromosome aberration complexity detected by m-FISH after culture in the presence of 5’-bromodeoxyuridine

    Get PDF
    The thymidine analogue, 5’-bromodeoxyuridine (BrdU), is a known mutagen that is routinely introduced into culture media for subsequent Harlequin stain analysis and determination of cell cycle status. Previously, we examined the induction of chromosome aberrations in human peripheral blood lymphocytes (PBL) known to be in their 1st cell division following exposure to a low dose (0.5 Gy, average one -particle per cell) of high-LET α-particles. We found complex chromosome aberrations to be characteristic of exposure to high-LET radiation and suggested the features of complex exchange to reflect qualitatively the spatial deposition of this densely ionising radiation. To exclude the possibility that BrdU addition post-irradiation influenced the complexity of chromosomal damage observed by m-FISH, the effect of increasing BrdU concentration on aberration complexity was investigated. Comparisons between BrdU concentration (0, 10, and 40 M) and between sham- and α-particle irradiated PBL, were made both independently and in combination to enable discrimination between BrdU and high-LET radiation effects. Aberration type, size, complexity and completeness were assessed by m-FISH, and the relative progression through cell division was evaluated. We found no evidence of any qualitative difference in the complexity of damage as visualized by m-FISH but did observe an increase in the frequency of complex exchanges with increasing BrdU concentration indicative of altered cell cycle kinetics. The parameters measured here are consistent with findings from previous in vitro and in vivo work, indicating that each complex aberration visualised by m-FISH is characteristic of the structure of the high-LET α-particle track and the geometry of cell irradiated
    • 

    corecore