21 research outputs found

    Hubble Asteroid Hunter: II. Identifying strong gravitational lenses in HST images with crowdsourcing

    Full text link
    The Hubble Space Telescope (HST) archives constitute a rich dataset of high resolution images to mine for strong gravitational lenses. While many HST programs specifically target strong lenses, they can also be present by coincidence in other HST observations. We aim to identify non-targeted strong gravitational lenses in almost two decades of images from the ESA it Hubble Space Telescope archive (eHST), without any prior selection on the lens properties. We used crowdsourcing on the Hubble Asteroid Hunter (HAH) citizen science project to identify strong lenses, alongside asteroid trails, in publicly available large field-of-view HST images. We visually inspected 2354 objects tagged by citizen scientists as strong lenses to clean the sample and identify the genuine lenses. We report the detection of 252 strong gravitational lens candidates, which were not the primary targets of the HST observations. 198 of them are new, not previously reported by other studies, consisting of 45 A grades, 74 B grades and 79 C grades. The majority are galaxy-galaxy configurations. The newly detected lenses are, on average, 1.3 magnitudes fainter than previous HST searches. This sample of strong lenses with high resolution HST imaging is ideal to follow-up with spectroscopy, for lens modelling and scientific analyses. This paper presents an unbiased search of lenses, which enabled us to find a high variety of lens configurations, including exotic lenses. We demonstrate the power of crowdsourcing in visually identifying strong lenses and the benefits of exploring large archival datasets. This study shows the potential of using crowdsourcing in combination with artificial intelligence for the detection and validation of strong lenses in future large-scale surveys such as ESA's future mission Euclid or in JWST archival images.Comment: 24 page, 14 figures, 5 tables, accepted for publication in A&A June 28 202

    Models of gravitational lens candidates from Space Warps CFHTLS

    Get PDF
    We report modelling follow-up of recently-discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially-interested volunteers from the SpaceWarps citizen-science community who originally found the candidate lenses. Models are categorised according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ~10^11 Msun to >10^13 Msun. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ~10^11 Msun. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW05). The two low-mass outliers are J0206-095 (SW19) and J2217+015 (SW42); if these two are indeed lenses, they probe an interesting regime of very low star-formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.Comment: 16 pages, 10 figures, 1 table, online supplement table_1.csv contains additional detailed numbers shown in table 1 and figure

    Gravitational lens modelling in a citizen science context

    Full text link
    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (glass), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed, these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arcs.Comment: 10 pages, 12 figure

    The lens SW05 J143454.4+522850: a fossil group at redshift 0.6?

    Full text link
    Fossil groups are considered the end product of natural galaxy group evolution in which group members sink towards the centre of the gravitational potential due to dynamical friction, merging into a single, massive, and X-ray bright elliptical. Since gravitational lensing depends on the mass of a foreground object, its mass concentration, and distance to the observer, we can expect lensing effects of such fossil groups to be particularly strong. This paper explores the exceptional system J143454.4+522850 (with a lens redshift zL = 0.625). We combine gravitational lensing with stellar population synthesis to separate the total mass of the lens into stars and dark matter. The enclosed mass profiles are contrasted with state-of-the-art galaxy formation simulations, to conclude that SW05 is likely a fossil group with a high stellar to dark matter mass fraction (0.027 ± 0.003) with respect to expectations from abundance matching (0.012 ± 0.004), indicative of a more efficient conversion of gas into stars in fossil groups

    Gravitational lens modelling in a citizen science context

    Get PDF
    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (glass), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed; these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arc

    Space Warps II. New Gravitational Lens Candidates from the CFHTLS Discovered through Citizen Science

    Get PDF
    We report the discovery of 29 promising (and 59 total) new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RingFinder on galaxy scales and ArcFinder on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the Space Warps sample and find them to be broadly similar. The image separation distribution calculated from the Space Warps sample shows that previous constraints on the average density profile of lens galaxies are robust. SpaceWarps recovers about 65% of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80% by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of Space Warps. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens finding algorithms. We make the pipeline and the training set publicly available.Comment: 23 pages, 12 figures, MNRAS accepted, minor to moderate changes in this versio

    Space Warps: I. Crowd-sourcing the Discovery of Gravitational Lenses

    Get PDF
    We describe Space Warps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowd-sourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web- based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 square degrees of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging into some 430,000 overlapping 82 by 82 arcsecond tiles and displaying them on the site, we were joined by around 37,000 volunteers who contributed 11 million image classifications over the course of 8 months. This Stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in Stage 2 to yield a sample that we expect to be over 90% complete and 30% pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SpaceWarps system to the wide field survey era, based on our projection that searches of 105^5 images could be performed by a crowd of 105^5 volunteers in 6 days.Comment: 21 pages, 13 figures, MNRAS accepted, minor to moderate changes in this versio

    SpaceWarps- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    Get PDF
    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SpaceWarps lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the ringfinder on galaxy scales and arcfinder on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SpaceWarps sample and find them to be broadly similar. The image separation distribution calculated from the SpaceWarps sample shows that previous constraints on the average density profile of lens galaxies are robust. SpaceWarps recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SpaceWarps. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly availabl

    SpaceWarps - I. Crowdsourcing the discovery of gravitational lenses

    Get PDF
    We describe SpaceWarps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430000 overlapping 82 by 82arcsec tiles and displaying them on the site, we were joined by around 37000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SpaceWarps system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6
    corecore