361 research outputs found

    Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    Get PDF
    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment

    Rare-earth—gallium—iron glasses. II. Anomalous magnetic hysteresis in alloys based on Pr, Nd, and Sm

    Get PDF
    Giant magnetic coercivity is reported in several metallic glasses of the form (R80G20)100-xFex where R represents Pr, Nd, or Sm, G represents Ga or Au, and 15≀x≀30. An unusual temperature variation of the coercive field is observed showing peaks at intermediate temperatures (≃90 K). In contrast to similar glasses based on heavy rare-earth metals, these glasses exhibit significant chemical short-range order and even phase separation as is shown by the Mössbauer effect and other measurements. The results are consistent with a recent theory which predicts that large coercivity can result from the presence of site-to-site variations in magnetic properties

    Literacy, orality annd the digital revolution: history and prospects for university undergraduate research fellows

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaf 51).For years, communications scholars have classified communication into two types, oral and literate. Oral communication is, of course, basic to humans. We are bom with the ability to speak and need no formal training in language. We simply learn the language that is spoken around us. Literate forms of communication, however, must be taught; we have no instincts as human beings for acquiring the ability to read and write. According to communications scholars such as Walter Ong and Marshall McLuhan, when an individual becomes literate, the written word became not just a vessel for communication, but a device that restructures her consciousness. Leonard Shlain extends this principle by arguing that literacy shifts a person's mental dependence from the right brain to left brain. The right hemisphere of the brain is the domain of oral communication - it is holistic and intuitive. The left hemisphere is the domain of logic, sequence and order. According to Shlain and other scholars, shifting from a right to a left brain dominance allowed for the creation of classical philosophy and the sciences as a result of the abstract thought that is made possible through literacy. The Digital Revolution, involving our new technologically advanced forms of communication such as the television, radio, the world wide web, email and others, is transforming our consciousness in a manner akin to the ways in which it was transformed by the Chirographic and Typographic revolutions. However, instead of dividing the two types of communicative devices, oral and literate, right brain and left brain, the communications revolution is fusing them. The dividing line that communications scholars have placed between oral and literate forms of communication is becoming increasingly meaningless in our "global village." Instead of thinking and speaking of new media forms in old terms such as "orality" and "literacy," we should instead be venturing forward with revised ways of thinking and speaking about our communicative devices. Instead of speaking in terms of "orality" and "literacy," we should instead be focusing on the ways in which our newest communicative forms are fusing aspects of both oral and literate communications into a hybridized structure

    Recent Upgrades for the NASA Ames Vertical Gun Range

    Get PDF
    Recent upgrades to the performance capabilities of the NASA Ames Vertical Gun Range(AVGR) are presented. Upgrades include: the successful implementation of a fast-acting, gun gases suppression valve to minimize target contamination and perturbations to both the target and ejecta; powder gun and light-gas gun operational parameter adjustments to provide clean, low speed test conditions; a liquid nitrogen-based system and methodology for chilling targets and/or other impact chamber situated equipment; and imaging system capabilities enhancements to enable observing 50 micrometer particles traveling at 2 km/s. Many of these performance improvements were motivated by AVGR customer requirements for very clean shot conditions at speeds below 1.9 km/s and to provide testing in support of proposed NASA missions to Enceladus and 16-Psyche

    Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    Get PDF
    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem

    MyoD−/− Satellite Cells in Single-Fiber Culture Are Differentiation Defective and MRF4 Deficient

    Get PDF
    AbstractMyoD-deficient mice are without obvious deleterious muscle phenotype during embryogenesis and fetal development, and adults in the laboratory have grossly normal skeletal muscle and life span. However, a previous study showed that in the context of muscle degeneration on a mdx (dystrophin null) genetic background, animals lacking MyoD have a greatly intensified disease phenotype leading to lethality not otherwise seen in mdx mice. Here we have examined MyoD−/− adult muscle fibers and their associated satellite cells in single myofiber cultures and describe major phenotypic differences found at the tissue, cellular, and molecular levels. The steady-state number of satellite cells on freshly isolated MyoD−/− fibers was elevated and abnormal branched fiber morphologies were observed, the latter suggesting chronic muscle regeneration in vivo. Single-cell RNA coexpression analyses were performed for c-met, m-cadherin, and the four myogenic regulatory factors (MRFs.) Most mutant satellite cells entered the cell cycle and upregulated expression of myf5, both characteristic early steps in satellite cell maturation. However, they later failed to normally upregulate MRF4, displayed a major deficit in m-cadherin expression, and showed a significant diminution in myogenin-positive status compared with wildtype. MyoD−/− satellite cells formed unusual aggregate structures, failed to fuse efficiently, and showed greater than 90% reduction in differentiation efficiency relative to wildtype. A further survey of RNAs encoding regulators of growth and differentiation, cell cycle progression, and cell signaling revealed similar or identical expression profiles for most genes as well as several noteworthy differences. Among these, GDF8 and Msx1 were identified as potentially important regulators of the quiescent state whose expression profile differs between mutant and wildtype. Considered together, these data suggest that activated MyoD−/− satellite cells assume a phenotype that resembles in some ways a developmentally “stalled” cell compared to wildtype. However, the MyoD−/− cells are not merely developmentally immature, as they also display novel molecular and cellular characteristics that differ from any observed in wild-type muscle precursor counterparts of any stage

    Upgrades and Modifications of the NASA Ames HFFAF Ballistic Range

    Get PDF
    The NASA Ames Hypervelocity Free Flight Aerodynamics Facility ballistic range is described. The various configurations of the shadowgraph stations are presented. This includes the original stations with film and configurations with two different types of digital cameras. Resolution tests for the 3 shadowgraph station configurations are described. The advantages of the digital cameras are discussed, including the immediate availability of the shadowgraphs. The final shadowgraph station configuration is a mix of 26 Nikon cameras and 6 PI-MAX2 cameras. Two types of trigger light sheet stations are described visible and IR. The two gunpowders used for the NASA Ames 6.251.50 light gas guns are presented. These are the Hercules HC-33-FS powder (no longer available) and the St. Marks Powder WC 886 powder. The results from eight proof shots for the two powders are presented. Both muzzle velocities and piston velocities are 5 9 lower for the new St. Marks WC 886 powder than for the old Hercules HC-33-FS powder (no longer available). The experimental and CFD (computational) piston and muzzle velocities are in good agreement. Shadowgraph-reading software that employs template-matching pattern recognition to locate the ballistic-range model is described. Templates are generated from a 3D solid model of the ballistic-range model. The accuracy of the approach is assessed using a set of computer-generated test images

    Methane and Nitrogen Abundances On Pluto and Eris

    Get PDF
    We present spectra of Eris from the MMT 6.5 meter telescope and Red Channel Spectrograph (5700-9800 angstroms; 5 angstroms per pix) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 meter telescope and Boller and Chivens spectrograph (7100-9400 angstroms; 2 angstroms per pix) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich (1983), and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are about 10% and about 90%, and Pluto's bulk methane and nitrogen abundances are about 3% and about 97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 micron band is seen in spectra of Pluto and Triton.Comment: The manuscript has 44 pages, 15 figures, and four tables. It will appear in the Astrophysical Journa

    The Ames Vertical Gun Range

    Get PDF
    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal
    • 

    corecore