12 research outputs found

    The importance of the urea cycle and its relationships to polyamine metabolism during ammonium stress in Medicago truncatula

    Get PDF
    The ornithine–urea cycle (urea cycle) makes a signifcant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. In this study, we compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium resulted in the accumulation of ammonium and pathway intermediates, particularly glutamine, arginine, ornithine, and putrescine. Arginine decarboxylase activity was decreased in roots, suggesting that the ornithine decarboxylase-dependent production of putrescine was important in situations of ammonium stress. The activity of copper amine oxidase, which releases ammonium from putrescine, was signifcantly decreased in both shoots and roots. In addition, physiological concentrations of ammonium inhibited copper amine oxidase activity in in vitro assays, supporting the conclusion that high ammonium accumulation favors putrescine synthesis. Moreover, early supplementation of plants with putrescine avoided ammonium toxicity. The levels of transcripts encoding urea-cyclerelated proteins were increased and transcripts involved in polyamine catabolism were decreased under high ammonium concentrations. We conclude that the urea cycle and associated polyamine metabolism function as important protective mechanisms limiting ammonium toxicity in M. truncatula. These fndings demonstrate the relevance of the urea cycle to polyamine metabolism in higher plants.This work was supported by the grants from the Spanish Government AGL2014-52396-P (MICINN) and AGL2017-86293-P (MINECO/ FEDER) to JFM, and the Basque Government, Spain, IT-1018-16 (UPV/EHU-GV) to RE. MU is a recipient of a pre-doctoral fellowship from the Government of Navarre, Spain. JB and PLG have received pre-doctoral fellowships from the Public University of Navarre, Spain. PT has received funding from the Italian Ministry of Education, University and Research (Grant to Department of Science, University ‘Roma Tre’-‘Dipartimenti di Eccellenza’, ARTICOLO 1, COMMI 314– 337. LEGGE 423 232/2016; PRIN 2017—CUP F84I19000730005). Partial support was obtained from the Spanish State Research Agency AGL2017-83358-R (AEI/FEDER) and the Government of Aragon, Spain, Group A09-20R to YG. Open Access funding was provided by the Public University of Navarra

    Synthesis and Leishmanicidal Activity of Novel Urea, Thiourea, and Selenourea Derivatives of Diselenides

    Get PDF
    A novel series of thirty-one N-substituted urea, thiourea, and selenourea derivatives containing diphenyldiselenide entities were synthesized, fully characterized by spectroscopic and analytical methods, and screened for their in vitro leishmanicidal activities. The cytotoxic activity of these derivatives was tested against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Thirteen of the synthesized compounds showed a significant antileishmanial activity, with 50% effective concentration (EC50) values lower than that for the reference drug miltefosine (EC50, 2.84¿¿M). In addition, the derivatives 9, 11, 42, and 47, with EC50 between 1.1 and 1.95¿¿M, also displayed excellent selectivity (selectivity index ranged from 12.4 to 22.7) and were tested against infected macrophages. Compound 11, a derivative with a cyclohexyl chain, exhibited the highest activity against intracellular amastigotes, with EC50 values similar to those observed for the standard drug edelfosine. Structure-activity relationship analyses revealed that N-aliphatic substitution in urea and selenourea is recommended for the leishmanicidal activity of these analogs. Preliminary studies of the mechanism of action for the hit compounds was carried out by measuring their ability to inhibit trypanothione reductase. Even though the obtained results suggest that this enzyme is not the target for most of these derivatives, their activity comparable to that of the standards and lack of toxicity in THP-1 cells highlight the potential of these compounds to be optimized for leishmaniasis treatment.Comunidad de MadridMinisterio de Economía y CompetitividadFoundation for Applied Medical Investigatio

    ModulaTransprot: explorando el uso de la nutrición amoniacal para reducir contenidos de nitrato en hortalizas de hoja en sistemas de cultivo sin suelo

    No full text
    Encontrar alternativas a través del diseño de productos y sistemas sostenibles que aumenten la eficiencia en el uso del nitrógeno y disminuya los contenidos de nitratos en tejidos comestibles es una necesidad científica, social y económica
    corecore