182 research outputs found

    Characterization of Ingredients Incorporated in the Traditional Mixed-Salad of the Capuchin Monks

    Get PDF
    Recipes on the composition of the \u201csalad of the monks\u201d (Capuchin monks) have been reported in Italy since the 17th century. Different wild edible plants were highly regarded as an important ingredient of this mixed salad. Among these, some species played a key role for both their taste and nutritional properties: Plantago coronopus L. (PC), Rumex acetosa L., Cichorium intybus L., and Artemisia dracunculus L. In the present study, the micromorphological and phytochemical features as well as the antioxidant and anti-inflammatory properties of extracts of these fresh and blanched leaves, were investigated. The extracts obtained by blanched leaves, according to the traditionally used cooking method, showed the highest content of bioactive compounds (total phenols 1202.31\u201310,751.88 mg GAE/100 g DW; flavonoids 2921.38\u201361,141.83 mg QE/100 g DW; flavanols 17.47\u2013685.52 mg CE/100 g DW; proanthocyanidins 2.83\u201316.33 mg CyE/100 g DW; total chlorophyll 0.84\u20131.09 mg/g FW; carbohydrates 0.14\u20131.92 g/100 g FW) and possess the most marked antioxidant (IC50 0.30\u2013425.20 \ub5g/mL) and anti-inflammatory activity (IC50 240.20\u2013970.02 \ub5g/mL). Considering this, our results indicate that increased consumption of the investigated plants, in particular of PC, raw or cooked briefly, could provide a healthy food source in the modern diet by the recovery and enhancement of ancient ingredients

    Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants.

    Get PDF
    © 2016 The Authors. Journal of Applied Entomology Published by Blackwell Verlag GmbH. The recent establishment of Xylella fastidiosa subspecies pauca in the southern Italian region of Apulia threatens agricultural crops and the environment. Olive is an important and widespread ancient crop in Italy and, so far, the most impacted host. The meadow spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae) has been identified as a vector of X. fastidiosa in southern Italy; this species is one of the most common potential vectors in Europe. To generate disease management strategies, data on X. fastidiosa transmission by P. spumarius are necessary. Therefore, we carried out transmission experiments by using field-collected spittlebugs in 2014 and 2015 (5 and 11 collection dates, respectively), and transferring groups of insects immediately on to recipient plants. Various host plant species were tested: olive, oleander, sweet orange, grapevine and the stone fruit rootstock GF677 (Prunus persica × Prunus amygdalus). Xylella fastidiosa was detected in all the host plants after insect plant access except for grapevine; infections to sweet orange and stone fruit were not systemic. In 2015, estimates of insect X. fastidiosa infectivity were obtained; the number of PCR-positive P. spumarius on each plant was positively correlated with the plant infection status. The proportion of P. spumarius infected with X. fastidiosa ranged from 25% to 71% during the entire survey period. The number of X. fastidiosa cells detected in P. spumarius heads ranged from 3.5 × 10 to 4.0 × 102(CFU equivalents), which is lower than that reported for leafhopper vectors in the Americas. These data show that field-collected P. spumarius have high rates of X. fastidiosa infection and are competent vectors

    Catheter Ablation of Atrial Fibrillation in Patients with Previous Lobectomy or Partial Lung Resection: Long-Term Results of an International Multicenter Study

    Full text link
    Introduction: Data regarding the efficacy of catheter ablation in patients with atrial fibrillation (AF) and patients' previous history of pulmonary lobectomy/pneumonectomy are scanty. We sought to evaluate the efficacy and long-term follow-up of catheter ablation in this highly selected group of patients. Material and Methods: Twenty consecutive patients (8 females, 40%; median age 65.2 years old) with a history of pneumonectomy/lobectomy and paroxysmal or persistent AF, treated by means of pulmonary vein isolation (PVI) at ten participating centers were included. Procedural success, intra-procedural complications, and AF recurrences were considered. Results: Fifteen patients had a previous lobectomy and five patients had a complete pneumonectomy. A large proportion (65%) of PV stumps were electrically active and represented a source of firing in 20% of cases. PVI was performed by radiofrequency ablation in 13 patients (65%) and by cryoablation in the remaining 7 cases. Over a median follow up of 29.7 months, a total of 7 (33%) AF recurrences were recorded with neither a difference between patients treated with cryoablation or radiofrequency ablation or between the two genders. Conclusions: Catheter ablation by radiofrequency ablation or cryoablation in patients with pulmonary stumps is feasible and safe. Long-term outcomes are favorable, and a similar efficacy of catheter ablation has been noticed in both males and females

    Mission and system architecture for an operational network of earth observation satellite nodes

    Get PDF
    Nowadays, constellations and distributed networks of satellites are emerging as clear development trends in the space system market to enable augmentation, enhancement, and possibilities of new applications for future Earth Observation (EO) missions. While the adoption of these satellite architectures is gaining momentum for the attaining of ever more stringent application requirements and stakeholder needs, the efforts to analyze their benefits and suitability, and to assess their impact for future programmes remains as an open challenge to the EO community. In this context, this paper presents the mission and system architecture conceived during the Horizon 2020 ONION project, a European Union research activity that proposes a systematic approach to the optimization of EO space infrastructures. In particular, ONION addressed the design of complementary assets that progressively supplement current programs and took part in the exploration of needs and implementation of architectures for the Copernicus Space Component for EO. Among several use cases considered, the ONION project focused on proposing system architectures to provide improved revisit time, data latency and image resolution for a demanding application scenario of interest: Marine Weather Forecast (MWF). A set of promising system architectures has been subject of a comprehensive assessment, based on mission analysis expertise and detailed simulation for evaluating several key parameters such as revisit time and data latency of each measurement of interest, on-board memory evolution and power budget of each satellite of the constellation, ground station contacts and inter-satellite links. The architectures are built with several heterogeneous satellite nodes distributed in different orbital planes. Each platform can embark different instrument sets, which provide the required measurements for each use case. A detailed mission analysis has then been performed to the selected architecture for the MWF use case, including a refined data flow analysis to optimize system resources; a refined power budget analysis; a delta-V and a fuel budget analysis considering all the possible phases of the mission. This includes from the correction of launcher injection errors and acquisition of nominal satellite position inside the constellation, orbit maintenance to control altitude, collision avoidance to avoid collision with space debris objects and end-of-life (EOL) disposal to comply with EOL guidelines. The relevance of the system architecture selected for the MWF has been evaluated for three use cases of interest (Arctic sea-ice monitoring, maritime fishery pressure and aquaculture, agricultural hydric stress) to show the versatility and the feasibility of the chosen architecture to be adapted for other EO applications.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687490

    EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts

    Get PDF
    Satellite Earth Observation (EO) data is ubiquitously used in many applications, providing basic services to society, such as environment monitoring, emergency management and civilian security. Due to the increasing request of EO products by the market, the classical EO data chain generates a severe bottleneck problem, further exacerbated in constellations. A huge amount of EO raw data generated on-board the satellite must be transferred to ground, slowing down the EO product availability, increasing latency, and hampering the growth of applications in accordance with the increased user demand. This paper provides an overview of the results achieved by the EO-ALERT project (http://eo-alert-h2020.eu/), an H2020 European Union research activity led by DEIMOS Space. EO-ALERT proposes the definition and development of the next-generation EO data processing chain, based on a novel flight segment architecture that moves optimised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering the EO products to the end user with very low latency (quasi-real-time). EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, reaching latencies below 1 minute in some scenarios. The proposed architecture solves the above challenges through a combination of innovations in the on-board elements of the data chain and the communications. Namely, the architecture introduces innovative technological solutions, including on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board data compression and encryption using AI, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. The paper presents the proposed architecture, its performance and hardware, considering two different user scenarios; ship detection and extreme weather observation/nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency lower than five minutes, for both SAR and Optical missions, demonstrating the viability of the EOALERT concept and architecture. The paper also discusses the implementation on an avionics test bench for testing the architecture with real EO data, with the aim of demonstrating that it can meet the requirements of the considered scenarios in terms of detection performance and provides technologies at a high TRL (4-5). When proven, this will open unprecedented opportunities for the exploitation of civil EO products, especially in latency sensitive scenarios, such as disaster management
    • …
    corecore