11,367 research outputs found
Interference effects in two-photon ATI by multiple orders high harmonics with random or locked phases
We numerically study 2-photon processes using a set of harmonics from a
Ti:Sapphire laser and in particular interference effects in the Above Threshold
Ionization spectra. We compare the situation where the harmonic phases are
assumed locked to the case where they have a random distribution. Suggestions
for possible experiments, using realistic parameters are discussed.Comment: 11 pages, 13 figures, LaTe
Coulomb-Volkov approach of ionization by extreme ultraviolet laser pulses in the subfemtosecond regime
In conditions where the interaction betweeen an atom and a short
high-frequency extreme ultraviolet laser pulse is a perturbation, we show that
a simple theoretical approach, based on Coulomb-Volkov-type states, can make
reliable predictions for ionization. To avoid any additional approximation, we
consider here a standard case : the ionization of hydrogen atoms initially in
their ground state. For any field parameter, we show that the method provides
accurate energy spectra of ejected electrons, including many above threshold
ionization peaks, as long as the two following conditions are simultaneously
fulfilled : (i) the photon energy is greater than or equal to the ionization
potential ; (ii) the ionization process is not saturated. Thus, ionization of
atoms or molecules by the high order harmonic laser pulses which are generated
at present may be addressed through this Coulomb-Volkov treatment.Comment: 19 pages including 5 figures and figure caption
Harmonic generation and filamentation: when secondary radiations have primary consequences
In this Letter, it is experimentally and theoretically shown that weak odd
harmonics generated during the propagation of an infrared ultrashort
ultra-intense pulse unexpectedly modify the nonlinear properties of the medium
and lead to a strong modification of the propagation dynamics. This result is
in contrast with all current state-of-the-art propagation model predictions, in
which secondary radiations, such as third harmonic, are expected to have a
negligible action upon the fundamental pulse propagation. By analysing full
three-dimensional ab initio quantum calculations describing the microscopic
atomic optical response, we have identified a fundamental mechanism resulting
from interferences between a direct ionization channel and a channel involving
one single ultraviolet photon. This mechanism is responsible for wide
refractive index modifications in relation with significant variation of the
ionization rate. This work paves the way to the full physical understanding of
the filamentation mechanism and could lead to unexplored phenomena, such as
coherent control of the filamentation by harmonic seeding.Comment: 7 pages, 5 figure
Modeling laser wakefield accelerators in a Lorentz boosted frame
Modeling of laser-plasma wakefield accelerators in an optimal frame of
reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of
calculations from first principles. Obtaining these speedups requires
mitigation of a high-frequency instability that otherwise limits effectiveness
in addition to solutions for handling data input and output in a
relativistically boosted frame of reference. The observed high-frequency
instability is mitigated using methods including an electromagnetic solver with
tunable coefficients, its extension to accomodate Perfectly Matched Layers and
Friedman's damping algorithms, as well as an efficient large bandwidth digital
filter. It is shown that choosing the frame of the wake as the frame of
reference allows for higher levels of filtering and damping than is possible in
other frames for the same accuracy. Detailed testing also revealed
serendipitously the existence of a singular time step at which the instability
level is minimized, independently of numerical dispersion, thus indicating that
the observed instability may not be due primarily to Numerical Cerenkov as has
been conjectured. The techniques developed for Cerenkov mitigation prove
nonetheless to be very efficient at controlling the instability. Using these
techniques, agreement at the percentage level is demonstrated between
simulations using different frames of reference, with speedups reaching two
orders of magnitude for a 0.1 GeV class stages. The method then allows direct
and efficient full-scale modeling of deeply depleted laser-plasma stages of 10
GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to
very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for
the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively
Two-Electron Effects in the Multiphoton Ionization of Magnesium with 400 nm 150 fs Pulses
The multiphoton ionization and photoelectron spectra of magnesium were
studied at laser intensities of up to 6x10^{13} Wcm^{-2} using 150 fs laser
pulses of a wavelength of 400 nm. The results indicated that a variety of
different ionization mechanisms played a role in both types of spectra. A
theoretical model describing the processes is presented and the routes to
ionization are identified. The work demonstrates the significance of the
two-electron nature of the atom in interpreting the experimental results.Comment: 14 pages, 9 figures, submitted to Physical Review
Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame
Laser driven plasma accelerators promise much shorter particle accelerators
but their development requires detailed simulations that challenge or exceed
current capabilities. We report the first direct simulations of stages up to 1
TeV from simulations using a Lorentz boosted calculation frame resulting in a
million times speedup, thanks to a frame boost as high as gamma=1300. Effects
of the hyperbolic rotation in Minkowski space resulting from the frame boost on
the laser propagation in the plasma is shown to be key in the mitigation of a
numerical instability that was limiting previous attempts
Speeding up simulations of relativistic systems using an optimal boosted frame
It can be computationally advantageous to perform computer simulations in a
Lorentz boosted frame for a certain class of systems. However, even if the
computer model relies on a covariant set of equations, it has been pointed out
that algorithmic difficulties related to discretization errors may have to be
overcome in order to take full advantage of the potential speedup. We summarize
the findings, the difficulties and their solutions, and show that the technique
enables simulations important to several areas of accelerator physics that are
otherwise problematic, including self-consistent modeling in three-dimensions
of laser wakefield accelerator stages at energies of 10 GeV and above.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
Dynamics of coupled bosonic systems with applications to preheating
Coupled, multi-field models of inflation can provide several attractive
features unavailable in the case of a single inflaton field. These models have
a rich dynamical structure resulting from the interaction of the fields and
their associated fluctuations. We present a formalism to study the
nonequilibrium dynamics of coupled scalar fields. This formalism solves the
problem of renormalizing interacting models in a transparent way using
dimensional regularization. The evolution is generated by a renormalized
effective Lagrangian which incorporates the dynamics of the mean fields and
their associated fluctuations at one-loop order. We apply our method to two
problems of physical interest: (i) a simple two-field model which exemplifies
applications to reheating in inflation, and (ii) a supersymmetric hybrid
inflation model. This second case is interesting because inflation terminates
via a smooth phase transition which gives rise to a spinodal instability in one
of the fields. We study the evolution of the zero mode of the fields and the
energy density transfer to the fluctuations from the mean fields. We conclude
that back reaction effects can be significant over a wide parameter range. In
particular for the supersymmetric hybrid model we find that particle production
can be suppressed due to these effects.Comment: 23 pages, 16 eps-figures, minor changes in the text, references
added, accepted for publication in PR
Recommended from our members
Timing of volcanism along the northern East Pacific Rise based on paleointensity experiments on basaltic glasses
Samples from two adjacent and contrasting ridge segments along the East Pacific Rise were measured for their magnetic paleointensity in order to further explore the possibilities of dating very young volcanic samples using secular variations in the Earth's magnetic field. The ridge segment north of the Orozco transform fault (15°22′-16°20′N) is the shallowest and broadest along more than 5000 km of the East Pacific Rise, whereas the adjacent segment to the north (16°16′-18°N) has a "typical" morphology for its intermediate spreading rate. Both ridge segments were densely sampled during the PANR01MV cruise and 36 samples of axial lava flows, consisting mainly of glasses from the rims of the flows and some fragments of lobate basalts, were selected from this collection for paleointensity experiments. The Coe version of the Thellier double-heating procedure (in air) was used. Twenty-seven units provide internally consistent paleointensity estimates leading to precise estimates of the paleofield, which range between 8 μT and 57 μT. Comparisons with reference paleointensity curves compiled from subaerial flows, archeomagnetic data and sedimentary records projected to the sampling site coordinates show that the measured values can be used to constrain the volcanic history of the ridge segments over the past few thousand years. A good agreement was found between apparent "freshness" of the glasses, the geochemistry of the lavas, and their magnetic paleointensity values. The inflated southern segment seems characterized by recent activities as indicated by numerous flows with paleointensities clustering around today's value (39 μT) or around the high values typical of 2000-3000 years ago (~55 μT). We interpret this distribution to indicate the flooding by effusive lava flows of the entire axial plateau some 2000-3000 years ago, followed by a volcanic phase producing smaller volume lava flows confined to the innermost 200 m of the ridge axis. The northern ridge segment is characterized by dispersed paleointensity values consistent with a series of small eruptions of diverse ages. Samples collected at the tips of both ridge segments across the 16°20′N axial discontinuity have the lowest paleointensities and are thus thought to be significantly older, consistent with models advocating reduced magmatism near ridge axis discontinuities. This study demonstrates the strong potential of paleointensity measurements as a tool to help constrain volcanic history at ridge axes
Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B
(Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor
dwarf galaxies. The low dust abundance enhances the penetration of UV photons
into the interstellar medium (ISM), resulting in a relatively larger filling
factor of the ionized gas. Furthermore, there is likely a hidden molecular gas
reservoir probed by the [CII]157um line. We present Herschel/PACS maps in
several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um
in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A
images were used as complementary data to investigate the effect of dust
extinction. Observations were interpreted with photoionization models to infer
the gas conditions and estimate the ionized gas contribution to the [CII]
emission. Photodissociation regions (PDRs) are probed through polycyclic
aromatic hydrocarbons (PAHs). We first study the distribution and properties of
the ionized gas. We then constrain the origin of [CII]157um by comparing to
tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by
extended emission from the high-excitation diffuse ionized gas; it is the
brightest far-infrared line, ~4 times brighter than [CII]. The extent of the
[OIII] emission suggests that the medium is rather fragmented, allowing far-UV
photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing
[CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the
stellar cluster for which as much as 15% could arise in the ionized gas. We
find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII]
dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs.
The combination of [CII] and [OI] provides a proxy for the total gas cooling in
PDRs. Our results suggest that PAH emission describes better the PDR gas
heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed
inverted line ratio in Sect. 5.
- …
