576 research outputs found

    The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    Full text link
    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, the method suffers a systematic error of order T/E0, where T is the plasma temperature and E0 is the initial energy of the charged particle. In the case of DT fusion, for example, this can lead to uncertainties as high as 10% or so. The formalism presented here is designed to account for the thermalization process, and in contrast, it provides results that are near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical Society meeting on plasma physic

    The quantized Hall conductance of a single atomic wire: A proposal based on synthetic dimensions

    Get PDF
    We propose a method by which the quantization of the Hall conductance can be directly measured in the transport of a one-dimensional atomic gas. Our approach builds on two main ingredients: (1) a constriction optical potential, which generates a mesoscopic channel connected to two reservoirs, and (2) a time-periodic modulation of the channel, specifically designed to generate motion along an additional synthetic dimension. This fictitious dimension is spanned by the harmonic-oscillator modes associated with the tightly-confined channel, and hence, the corresponding "lattice sites" are intimately related to the energy of the system. We analyze the quantum transport properties of this hybrid two-dimensional system, highlighting the appealing features offered by the synthetic dimension. In particular, we demonstrate how the energetic nature of the synthetic dimension, combined with the quasi-energy spectrum of the periodically-driven channel, allows for the direct and unambiguous observation of the quantized Hall effect in a two-reservoir geometry. Our work illustrates how topological properties of matter can be accessed in a minimal one-dimensional setup, with direct and practical experimental consequences.

    Absorption imaging of a quasi 2D gas: a multiple scattering analysis

    Full text link
    Absorption imaging with quasi-resonant laser light is a commonly used technique to probe ultra-cold atomic gases in various geometries. Here we investigate some non-trivial aspects of this method when it is applied to in situ diagnosis of a quasi two-dimensional gas. Using Monte Carlo simulations we study the modification of the absorption cross-section of a photon when it undergoes multiple scattering in the gas. We determine the variations of the optical density with various parameters, such as the detuning of the light from the atomic resonance and the thickness of the gas. We compare our results to the known three-dimensional result (Beer-Lambert law) and outline the specific features of the two-dimensional case.Comment: 22 pages, 5 figure

    Genomic determinants of Furin cleavage in diverse European SARS-related bat coronaviruses

    Get PDF
    The furin cleavage site (FCS) in SARS-CoV-2 is unique within the Severe acute respiratory syndrome–related coronavirus (SrC) species. We re-assessed diverse SrC from European horseshoe bats and analyzed the spike-encoding genomic region harboring the FCS in SARS-CoV-2. We reveal molecular features in SrC such as purine richness and RNA secondary structures that resemble those required for FCS acquisition in avian influenza viruses. We discuss the potential acquisition of FCS through molecular mechanisms such as nucleotide substitution, insertion, or recombination, and show that a single nucleotide exchange in two European bat-associated SrC may suffice to enable furin cleavage. Furthermore, we show that FCS occurrence is variable in bat- and rodent-borne counterparts of human coronaviruses. Our results suggest that furin cleavage sites can be acquired in SrC via conserved molecular mechanisms known in other reservoir-bound RNA viruses and thus support a natural origin of SARS-CoV-2

    Spin transport in a one-dimensional quantum wire

    Full text link
    We analyze the spin transport through a finite-size one-dimensional interacting wire connected to noninteracting leads. By combining renormalization-group arguments with other analytic considerations such as the memory function technique and instanton tunneling, we find the temperature dependence of the spin conductance in different parameter regimes in terms of interactions and the wire length. The temperature dependence is found to be nonmonotonic. In particular, the system approaches perfect spin conductance at zero temperature for both attractive and repulsive interactions, in contrast with the static spin conductivity. We discuss the connection of our results to recent experiments with ultracold atoms and compare the theoretical prediction to experimental data in the parameter regime where temperature is the largest energy scale.Comment: 16 pages, 10 figure

    The structure and function of complex networks

    Full text link
    Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.Comment: Review article, 58 pages, 16 figures, 3 tables, 429 references, published in SIAM Review (2003

    Simulations of Aerodynamic Damping for MEMS Resonators

    Get PDF
    Aerodynamic damping for MEMS resonators is studied based on the numerical solution of Boltzmann-ESBGK equation. A compact model is then developed based on numerical simulations for a wide range of Knudsen numbers. The damping predictions are compared with both Reynold equation based models and several sets of experimental data. It has been found that the structural damping is dominant at low pressures (high Knudsen numbers). For cases with small length-to-width ratios and large vibration amplitudes, the threedimensionality effects must be taken into account. Finally, an uncertainty quantification approach based on the probability transformation method has been applied to assess the influence of pressure and geometric uncertainties. The output probability density functions (PDF) of the damping ratio has been studied for various input PDF of beam geometry and ambient pressure

    Real‐world treatment patterns and outcomes using terlipressin in 203 patients with the hepatorenal syndrome

    Get PDF
    Background: Hepatorenal syndrome and acute kidney injury are common complications of decompensated cirrhosis, and terlipressin is recommended as first‐line vasoconstrictor therapy. However, data on its use outside of clinical trials are lacking. / Aims: To assess practice patterns and outcomes around vasoconstrictor use for hepatorenal syndrome in UK hospitals. / Methods: This was a multicentre chart review study. Data were extracted from medical records of patients diagnosed with hepatorenal syndrome and treated by vasoconstrictor drugs between January 2013 and December 2017 at 26 hospitals in the United Kingdom. The primary outcome was improvement of kidney function, defined as complete response (serum creatinine improved to ≤1.5 mg/dL), partial response (serum creatinine reduction of ≥20% but >1.5 mg/dL) and overall response (complete or partial response). Other outcomes included need for dialysis, mortality, liver transplantation and adverse events. / Results: Of the 225 patients included in the analysis, 203 (90%) were treated with terlipressin (median duration, 6 days; range: 2‐24 days). Mean (±standard deviation) serum creatinine at vasopressor initiation was 3.25 ± 1.64 mg/dL. Terlipressin overall response rate was 73%. Overall response was higher in patients with mild acute kidney injury (baseline serum creatinine <2.25 mg/dL), compared to those with moderate (serum creatinine ≥2.25 mg/dL and <3.5 mg/dL) or severe (serum creatinine ≥3.5 mg/dL). Ninety‐day survival was 86% for all patients (93% for overall responders vs 66% for treatment nonresponders, P < 0.0001). / Conclusion: Terlipressin is the most commonly prescribed vasoconstrictor for patients with hepatorenal syndrome in the United Kingdom. Treatment with terlipressin in patients with less severe acute kidney injury (serum creatinine <2.25 mg/dL) was associated with higher treatment responses, and 90‐day survival

    Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children

    Get PDF
    Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults
    corecore