24 research outputs found

    Resource-dependent evolution of female resistance responses to sexual conflict

    Get PDF
    Sexual conflict can promote the evolution of dramatic reproductive adaptations as well as resistance to its potentially costly effects. Theory predicts that responses to sexual conflict will vary significantly with resource levels-when scant, responses should be constrained by trade-offs, when abundant, they should not. However, this can be difficult to test because the evolutionary interests of the sexes align upon short-term exposure to novel environments, swamping any selection due to sexual conflict. What is needed are investigations of populations that are well adapted to both differing levels of sexual conflict and resources. Here, we used this approach in a long-term experimental evolution study to track the evolution of female resistance to sexual conflict in the fruit fly Drosophila melanogaster. In resource-rich regimes, high-conflict females evolved resistance to continual exposure to males. There was no difference in baseline survival, consistent with the idea that responses evolving under nutritional abundance experienced no trade-offs with resistance. In the poor resource regimes, the ability of high-conflict females to evolve resistance to males was severely compromised and they also showed lower baseline survival than low-conflict females. This suggested high-conflict females traded off somatic maintenance against any limited resistance they had evolved in response to sexual conflict. Overall, these findings provide experimental support for the hypothesis that evolutionary responses to sexual conflict are critically dependent upon resource levels

    Development of the Bélanger Equation and Backwater Equation by Jean-Baptiste Bélanger (1828)

    Get PDF
    A hydraulic jump is the sudden transition from a high-velocity to a low-velocity open channel flow. The application of the momentum principle to the hydraulic jump is commonly called the Bélanger equation, but few know that Bélanger's (1828) treatise was focused on the study of gradually varied open channel flows. Further, although Bélanger understood the rapidly-varied nature of the jump flow, he applied incorrectly the Bernoulli principle in 1828, and corrected his approach 10 years later. In 1828, his true originality lay in the successful development of the backwater equation for steady, one-dimensional gradually-varied flows in an open channel, together with the introduction of the step method, distance calculated from depth, and the concept of critical flow conditions

    Food security for infants and young children: an opportunity for breastfeeding policy?

    Get PDF

    Traité de la mécanique des corps solides et du calcul de l'effet des machines

    No full text
    Errata: p. [xv-xvi]Mode of access: Internet
    corecore