444 research outputs found

    Marine viruses:key players in marine ecosystems

    Get PDF
    Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

    Lightweight XML-based query, integration and visualization of distributed, multimodality brain imaging data

    Get PDF
    A need of many neuroimaging researchers is to integrate multimodality brain data that may be stored in separate databases. To address this need we have developed a framework that provides a uniform XML-based query interface across multiple online data sources. The development of this framework is driven by the need to integrate neurosurgical and neuroimaging data related to language. The data sources for the language studies are 1) a web-accessible relational database of neurosurgical cortical stimulation mapping data (CSM) that includes patient-specific 3-D coordinates of each stimulation site mapped to an MRI reconstruction of the patient brain surface; and 2) an XML database of fMRI and structural MRI data and analysis results, created automatically by a batch program we have embedded in SPM. To make these sources available for querying each is wrapped as an XML view embedded in a web service. A top level web application accepts distributed XQueries over the sources, which are dispatched to the underlying web services. Returned results can be displayed as XML, HTML, CSV (Excel format), a 2-D schematic of a parcellated brain, or a 3-D brain visualization. In the latter case the CSM patient-specific coordinates returned by the query are sent to a transformation web-service for conversion to normalized space, after which they are sent to our 3-D visualization program MindSeer, which is accessed via Java WebStart through a generated link. The anatomical distribution of pooled CSM sites can then be visualized using various surfaces derived from brain atlases. As this framework is further developed and generalized we believe it will have appeal for researchers who wish to query, integrate and visualize results across their own databases as well as those of collaborators

    Fenoldapam for Acute Kidney Injury in Children

    Get PDF
    We report two cases of children with severe cardiomyopathy requiring treatment with ventricular assist devices who developed acute kidney injury and were treated with fenoldopam. Therapy with fenoldopam appeared successful in one case in that renal replacement therapy was avoided with improvement in urine output and renal function. These are the first reported cases of fenoldopam use in children with acute kidney injury receiving mechanical circulatory support

    Nonsteroidal Anti-Inflammatory Drugs Are an Important Cause of Acute Kidney Injury in Children

    Get PDF
    Objective To characterize nonsteroidal anti-inflammatory drug (NSAID)-associated acute kidney injury (AKI) in children. Study design We conducted a retrospective chart review of children diagnosed with AKI through the use of International Classification of Diseases, Ninth Revision diagnosis code 584.5 or 584.9 from January 1999 to June 2010. Medical records were reviewed to confirm the diagnosis of AKI and to quantify NSAID administration. Pediatric RIFLE criteria were used to codify AKI. Patients were not classified as having NSAID-associated AKI if they had a diagnosis explaining AKI or comorbid clinical conditions predisposing to AKI development. Results Patients (N = 1015) were identified through International Classification of Diseases, Ninth Revision screening. Twenty-one children had clinical, laboratory, and radiographic studies suggesting NSAID-associated acute tubular necrosis and 6 had findings suggesting NSAID-associated acute interstitial nephritis, representing 2.7% (27 of 1015) of the total cohort with AKI and 6.6% when excluding complex patients with multifactorial AKI. Children with NSAID-associated AKI had a median (range) age of 14.7 years (0.5-17.7 years); 4 patients (15%) were (75%) for whom dosing data were available received NSAIDs within recommended dosing limits. Patients (100% vs 0%, P \u3c .001), intensive care unit admission (75% vs 9%, P = .013), and a longer length of stay (median 10 vs 7 days, P = .037). Conclusions NSAID-associated AKI accounted for 2.7% of AKI in this pediatric population. AKI typically occurred after the administration of correctly dosed NSAIDs. Young children with NSAID-associated AKI may have increased disease severity

    Shift from Carbon Flow through the Microbial Loop to the Viral Shunt in Coastal Antarctic Waters during Austral Summer

    Get PDF
    The relative flow of carbon through the viral shunt and the microbial loop is a pivotal factor controlling the contribution of secondary production to the food web and to rates of nutrient remineralization and respiration. The current study examines the significance of these processes in the coastal waters of the Antarctic during the productive austral summer months. Throughout the study a general trend towards lower bacterioplankton and heterotrophic nanoflagellate (HNF) abundances was observed, whereas virioplankton concentration increased. A corresponding decline of HNF grazing rates and shift towards viral production, indicative of viral infection, was measured. Carbon flow mediated by HNF grazing decreased by more than half from 5.7 µg C L−1 day−1 on average in December and January to 2.4 µg C L−1 day−1 in February. Conversely, carbon flow through the viral shunt increased substantially over the study from on average 0.9 µg C L−1 day−1 in December to 7.6 µg C L−1 day−1 in February. This study shows that functioning of the coastal Antarctic microbial community varied considerably over the productive summer months. In early summer, the system favors transfer of matter and energy to higher trophic levels via the microbial loop, however towards the end of summer carbon flow is redirected towards the viral shunt, causing a switch towards more recycling and therefore increased respiration and regeneration

    Experimental study of the pressure loss in aero-engine air-oil separators

    Get PDF
    The results of extensive experimental testing of an aero-engine air-oil separator are presented and discussed. The study focuses on the pressure loss of the system. Oil enters the device in the form of dispersed droplets. Subsequently, separation occurs by centrifuging larger droplets towards the outer walls and by film formation at the inner surface of a rotating porous material, namely an open-cell metal foam. The work described here is part of a study led jointly by the Karlsruhe Institute of Technology (KIT) and the University of Nottingham (UNott) within a recent EU project. The goal of the research is to increase the separation efficiency to mitigate oil consumption and emissions, while keeping the pressure loss as low as possible. The aim is to determine the influencing factors on pressure loss and separation efficiency. With this knowledge, a correlation can eventually be derived. Experiments were conducted for three different separator configurations, one without a metal foam and two with metal foams of different pore sizes. For each configuration, a variety of engine-like conditions of air mass flow rate, rotational speed and droplet size was investigated. The experimental results were used to validate and improve the numerical modelling. Results for the pressure drop and its dependencies on air mass flow rate and the rotational speed were analysed. It is shown that the swirling flow and the dissipation of angular momentum are the most important contributors to the pressure drop, besides the losses due to friction and dissipation caused by the flow passing the metal foam. It was found that the ratio of the rotor speed and the tangential velocity of the fluid is an important parameter to describe the influence of rotation on the pressure loss. Contrary to expectations, the pressure loss is not necessarily increased with a metal foam installed

    Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters

    Get PDF
    Copepods that enter dormancy, such as Calanoides acutus, are key primary consumers in Southern Ocean food webs where they convert a portion of the seasonal phytoplankton biomass into a longer-term energetic and physiological resource as wax ester (WE) reserves. We studied the seasonal abundance and lipid profiles of pre-adult and adult C. acutus in relation to phytoplankton dynamics on the Western Antarctic Peninsula. Initiation of dormancy occurred when WE unsaturation was relatively high, and chlorophyll a (Chl a) concentrations, predominantly attributable to diatoms, were reducing. Declines in WE unsaturation during the winter may act as a dormancy timing mechanism with increased Chl a concentrations likely to promote sedimentation that results in a teleconnection between the surface and deep water inducing ascent. A late summer diatom bloom was linked to early dormancy termination of females and a second spawning event. The frequency and duration of high biomass phytoplankton blooms may have consequences for the lifespan of the iteroparous C. acutus females (either 1 or 2 years) if limited by a total of two main spawning events. Late summer recruits, generated by a second spawning event, likely benefitted from lower predation and high phytoplankton food availability. The flexibility of copepods to modulate their life-cycle strategy in response to bottom-up and top-down conditions enables individuals to optimize their probability of reproductive success in the very variable environment prevalent in the Southern Ocean

    Compositional Solution Space Quantification for Probabilistic Software Analysis

    Get PDF
    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time

    Diapycnal mixing across the photic zone of the NE Atlantic

    Get PDF
    Variable physical conditions such as vertical turbulent exchange, internal wave, and mesoscale eddy action affect the availability of light and nutrients for phytoplankton (unicellular algae) growth. It is hypothesized that changes in ocean temperature may affect ocean vertical density stratification, which may hamper vertical exchange. In order to quantify variations in physical conditions in the northeast Atlantic Ocean, we sampled a latitudinal transect along 17 ± 5∘ W between 30 and 63∘ N in summer. A shipborne conductivity–temperature–depth (CTD) instrumented package was used with a custom-made modification of the pump inlet to minimize detrimental effects of ship motions on its data. Thorpe-scale analysis was used to establish turbulence values for the upper 500 m from three to six profiles obtained in a short CTD yo-yo, 3 to 5 h after local sunrise. From south to north, average temperature decreased together with stratification while turbulence values weakly increased or remained constant. Vertical turbulent nutrient fluxes did not vary significantly with stratification and latitude. This apparent lack of correspondence between turbulent mixing and temperature is likely due to internal waves breaking (increased stratification can support more internal waves), acting as a potential feedback mechanism. As this feedback mechanism mediates potential physical environment changes in temperature, global surface ocean warming may not affect the vertical nutrient fluxes to a large degree. We urge modellers to test this deduction as it could imply that the future summer phytoplankton productivity in stratified oligotrophic waters would experience little alterations in nutrient input from deeper waters

    Evaluating spatial normalization methods for the human brain

    Get PDF
    Cortical stimulation mapping (CSM) studies have shown cortical locations for language function are highly variable from one subject to the next. If individual variation can be normalized, patterns of language organization may emerge that were heretofore hidden. In order to uncover this pattern, computer-aided spatial normalization to a common atlas is required. Our problem was how to determine which spatial normalization method was best for the given research application. We developed key metrics to measure accuracy of a surface-based (Caret) and volume-based (SPM2) method. We specified that the optimal method would i) minimize variation as measured by spread reduction between CSM language sites across subjects while also ii) preserving anatomical localization of all CSM sites. Eleven subject’s structural MR data and corresponding CSM site coordinates were registered to the colin27 human brain atlas using each method. Local analysis showed that mapping error rates for both methods were highest in morphological regions with the greatest difference between source and target. Also, SPM2 mapped significantly less type 2 errors. Although our experiment did not show statistically significant global differences between the methods, our methodology provided valuable insights into the pros and cons of each
    • …
    corecore