70 research outputs found

    Peak Speeds of Professional Football Players During Bouts of Non-curved, Manual Treadmill Sprints

    Get PDF
    Purpose: Speed training and short distance sprints have become an essential component of preparation for professional football players. Current trends in speed training have included the application of non-curved, manual treadmills, as they may enhance peak speeds with less biomechanical stress. A lack of data currently exists in regards to the effectiveness of different settings and peak speed response. Therefore, we proposed to compare peak speeds during different settings of non-curved, manual treadmills. It was hypothesized that as resistance/incline increased, peak sprinting speeds would decrease and vice versa. Methods: Fourteen male professional football players (27.14 ± 3.11 yrs., 183.93 ± 8.52 cm, 100.36 ± 15.60 kg) sprinted at peak speeds during four different incline/resistance bouts. Paired samples T-tests examined differences between bouts, and significance was set at p ≤ 0.008. Results: A significant difference (p \u3c 0.001) existed for peak speeds between each incline/resistance bout (i.e. INC15R8, INC15R5, INC20R3, INC20R1). Conclusions: The observed data differences existed between all bouts, indicating that as resistance and/or incline increased, peak speed decreased. This also indicated that as resistance and/or incline decreased, peak speed increased during sprint bouts in professional football players

    Measuring Energy Expenditure and Heart Rate during Maximum Aerobic Testing with the Apple Watch Series 7

    Get PDF
    Introduction: Wrist-worn devices such as the Apple Watch have emerged as technology for tracking physical activity. The aim of this research study is to analyze the Apple Watch Series 7 (AW7) with measurements of the maximum heart rate (MHR) and maximum energy expenditure (MEE) during a maximal aerobic capacity test on the treadmill. AW7 measurements will be compared to the Polar Heart Rate Monitor (Polar) and the PARVO Metabolic Cart (PARVO). Methods: 22 healthy and active subjects (mean ± SD: age 23.8 ± 4.0 years; BMI 23.0 ± 5.9 kg/m2 ) volunteered for the study. The subjects confirmed their activity, health status, and were measured for body composition and aerobic capacity. Results: No significant difference was found in MEE between PARVO (109.6 ± 41.7 kcal) and AW7 (98.7 ± 24.3 kcal) conditions; t(21)=1.5, p = 0.153. In addition, there was no significant difference in MHR between PARVO (186.2 ± 16.2 BPM) and AW7 (189.3 ± 8.5 BPM) conditions; t(21)=-0.9, p = 0.379. Conclusions: The main findings of this study show that the MEE as well as the MHR between the AW7 compared to the PARVO are not different

    The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals

    Get PDF
    BACKGROUND: The consumption of dietary protein is important for resistance-trained individuals. It has been posited that intakes of 1.4 to 2.0 g/kg/day are needed for physically active individuals. Thus, the purpose of this investigation was to determine the effects of a very high protein diet (4.4 g/kg/d) on body composition in resistance-trained men and women. METHODS: Thirty healthy resistance-trained individuals participated in this study (mean ± SD; age: 24.1 ± 5.6 yr; height: 171.4 ± 8.8 cm; weight: 73.3 ± 11.5 kg). Subjects were randomly assigned to one of the following groups: Control (CON) or high protein (HP). The CON group was instructed to maintain the same training and dietary habits over the course of the 8 week study. The HP group was instructed to consume 4.4 grams of protein per kg body weight daily. They were also instructed to maintain the same training and dietary habits (e.g. maintain the same fat and carbohydrate intake). Body composition (Bod Pod®), training volume (i.e. volume load), and food intake were determined at baseline and over the 8 week treatment period. RESULTS: The HP group consumed significantly more protein and calories pre vs post (p \u3c 0.05). Furthermore, the HP group consumed significantly more protein and calories than the CON (p \u3c 0.05). The HP group consumed on average 307 ± 69 grams of protein compared to 138 ± 42 in the CON. When expressed per unit body weight, the HP group consumed 4.4 ± 0.8 g/kg/d of protein versus 1.8 ± 0.4 g/kg/d in the CON. There were no changes in training volume for either group. Moreover, there were no significant changes over time or between groups for body weight, fat mass, fat free mass, or percent body fat. CONCLUSIONS: Consuming 5.5 times the recommended daily allowance of protein has no effect on body composition in resistance-trained individuals who otherwise maintain the same training regimen. This is the first interventional study to demonstrate that consuming a hypercaloric high protein diet does not result in an increase in body fat

    An Acute Bout of Self-Myofascial Release in the Form of Foam Rolling Improves Performance Testing

    Get PDF
    International Journal of Exercise Science 7(3) : 202-211, 2014. Recent developments in the strength and conditioning field have shown the incorporation of foam rolling self-myofascial release in adjunct with a dynamic warm-up. This is thought to improve overall training performance; however, minimal research exists supporting this theory. Therefore, determining if an acute bout of foam rolling self-myofascial release in addition to a dynamic warm-up could influence performance is of importance. In order to do so, eleven athletically trained male subjects participated in a two condition, counterbalanced, crossover within-subjects study comparing two particular warm-up routines. The two warm-up routines compared were a total-body dynamic warm-up (DYN) and a total-body dynamic warm-up in adjunct with a self-myofascial release, total-body foam rolling session (SMR). Following each warm-up condition, subjects performed tests of flexibility, power, agility, strength, and speed. Paired samples T-tests were utilized to determine if there were any significant differences in test results between conditions (DYN vs. SMR). The data indicated that SMR was effective at improving power, agility, strength, and speed when compared to DYN (P ≤ 0.024). A warm-up routine consisting of both a dynamic warm-up and a self-myofascial release, total-body foam rolling session resulted in overall improvements in athletic performance testing

    Weight loss and competition weight in Ultimate Fighting Championship (UFC) athletes

    Get PDF
    Previous research has demonstrated that professional mixed martial arts (MMA) athletes employ a variety of weight manipulation strategies to compete at given weight classes. Although there is much literature demonstrating weight manipulation methods, minimal research exists analyzing how much weight MMA athletes lose prior to the official weigh-in. Moreover, there is minimal research examining how much weight professional MMA athletes gain between the official weigh-in and competition. Therefore, the purpose of the current study was to analyze weight loss/regain in professional MMA athletes. Data collected from 616 professional MMA athletes (31.1 ± 4.0 yrs. ; 177.1 ± 4.7 cm) competing for the Ultimate Fighting Championship (UFC) between 2020 and 2022 were used for the study. The athlete’s weight was obtained 72 h, 48 h, and 24 h prior to the official weigh-in, at the official weigh-in, and prior to competition. Random effects analysis was utilized to compare weight at a variety of time points between different weight classes. All statistics were analyzed, and significance was set at p ≤ 0.05. There is a significant (p ≤ 0.05) difference between weight classes and time points in professional MMA. MMA athletes decrease body weight significantly prior to the official weigh-in. MMA athletes increase body weight significantly between official weigh-in and competition. Based on these data, it appears that MMA athletes average a weight loss of nearly 7 % within 72 h prior to the official weigh-in. The data also suggest that athletes gain nearly 10 % of total weight between the official weigh-in and competition

    A high protein diet has no harmful effects: A one-year crossover study in resistance-trained males

    Get PDF
    The purpose of this investigation was to determine the effects of a high protein diet over a one-year period. Fourteen healthy resistance-trained men completed the study (mean ± SD; age  yr; height  cm; and average years of training  yr). In a randomized crossover design, subjects consumed their habitual or normal diet for 2 months and 4 months and alternated that with a higher protein diet (\u3e3 g/kg/d) for 2 months and 4 months. Thus, on average, each subject was on their normal diet for 6 months and a higher protein diet for 6 months. Body composition was assessed via the Bod Pod®. Each subject provided approximately 100–168 daily dietary self-reports. During the subjects’ normal eating phase, they consumed (mean ± SD)  kcals/kg/day and  g/kg/day of protein. This significantly increased () during the high protein phase to  kcals/kg/day and  g/kg/day of protein. Our investigation discovered that, in resistance-trained men that consumed a high protein diet (~2.51–3.32 g/kg/d) for one year, there were no harmful effects on measures of blood lipids as well as liver and kidney function. In addition, despite the total increase in energy intake during the high protein phase, subjects did not experience an increase in fat mass

    A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women - a follow-up investigation

    Get PDF
    Background The consumption of a high protein diet (\u3e4 g/kg/d) in trained men and women who did not alter their exercise program has been previously shown to have no significant effect on body composition. Thus, the purpose of this investigation was to determine if a high protein diet in conjunction with a periodized heavy resistance training program would affect indices of body composition, performance and health. Methods Forty-eight healthy resistance-trained men and women completed this study (mean ± SD; Normal Protein group [NP n = 17, four female and 13 male]: 24.8 ± 6.9 yr; 174.0 ± 9.5 cm height; 74.7 ± 9.6 kg body weight; 2.4 ± 1.7 yr of training; High Protein group [HP n = 31, seven female and 24 male]: 22.9 ± 3.1 yr; 172.3 ± 7.7 cm; 74.3 ± 12.4 kg; 4.9 ± 4.1 yr of training). Moreover, all subjects participated in a split-routine, periodized heavy resistance-training program. Training and daily diet logs were kept by each subject. Subjects in the NP and HP groups were instructed to consume their baseline (~2 g/kg/d) and \u3e3 g/kg/d of dietary protein, respectively. Results Subjects in the NP and HP groups consumed 2.3 and 3.4 g/kg/day of dietary protein during the treatment period. The NP group consumed significantly (p \u3c 0.05) more protein during the treatment period compared to their baseline intake. The HP group consumed more (p \u3c 0.05) total energy and protein during the treatment period compared to their baseline intake. Furthermore, the HP group consumed significantly more (p \u3c 0.05) total calories and protein compared to the NP group. There were significant time by group (p ≤ 0.05) changes in body weight (change: +1.3 ± 1.3 kg NP, −0.1 ± 2.5 HP), fat mass (change: −0.3 ± 2.2 kg NP, −1.7 ± 2.3 HP), and % body fat (change: −0.7 ± 2.8 NP, −2.4 ± 2.9 HP). The NP group gained significantly more body weight than the HP group; however, the HP group experienced a greater decrease in fat mass and % body fat. There was a significant time effect for FFM; however, there was a non-significant time by group effect for FFM (change: +1.5 ± 1.8 NP, +1.5 ± 2.2 HP). Furthermore, a significant time effect (p ≤ 0.05) was seen in both groups vis a vis improvements in maximal strength (i.e., 1-RM squat and bench) vertical jump and pull-ups; however, there were no significant time by group effects (p ≥ 0.05) for all exercise performance measures. Additionally, there were no changes in any of the blood parameters (i.e., basic metabolic panel). Conclusion Consuming a high protein diet (3.4 g/kg/d) in conjunction with a heavy resistance-training program may confer benefits with regards to body composition. Furthermore, there is no evidence that consuming a high protein diet has any deleterious effects

    The Physiologic and Behavioral Implications of Playing Active and Sedentary Video Games in a Seated and Standing Position

    Get PDF
    International Journal of Exercise Science 7(3) : 194-201, 2014. Previous studies have assessed physiologic response while playing video games per manufacturer instructions with participants standing during active video game play and seated during sedentary game play. It is not known whether an assigned seated or standing position affects positional preference and oxygen consumption (VO2) while gaming. The purpose of the study was to assess VO2 and preference of playing active and sedentary video games in a seated and standing position. VO2 was assessed in 25 participants during four, 20-minute conditions; resting, PlayStation 2 Madden NFL Football 2011, Nintendo Wii-Sports Boxing and Nintendo Wii Madden NFL Football 2011. Each condition was divided into two positional conditions (10 minutes seated, 10 minutes standing) and each participant indicated their positional preference after each 20-minute condition. Standing VO2 (4.4 ± 0.2 ml•kg-1•min-1 PS2, 4.6 ± 0.1 ml•kg-1•min-1 Wii Madden, 6.8 ± 0.3 ml•kg-1•min-1Wii Boxing) was significantly (p ≤ 0.001) greater than seated VO2 (4.0 ± 0.1 ml•kg-1•min-1 PS2, 4.2 ± 0.1 ml•kg-1•min-1 Wii Madden, 6.1 ± 0.3 ml•kg-1•min-1Wii Boxing) for each gaming condition. Participants preferred (p ≤ 0.001) to sit for all gaming conditions except Wii Boxing. Playing video games while standing increases VO2 to a greater extent than playing the same games in a seated position. Standing was only preferred for the most physiologically challenging game, Wii Boxing. Gaming position should be considered when assessing the physiologic and behavioral outcomes of playing video games

    Do glucose containing beverages play a role in thermoregulation, thermal sensation, and mood state?

    Get PDF
    INTRODUCTION: Dehydration limits the appropriate delivery of oxygen and substrates to the working muscle. Further, the brain’s ability to function may also be compromised whereby thermal sensation and mood state may be altered. PURPOSE: The purpose of the present investigation was to compare the thermoregulatory, perceptual, and negative mood state profile in glucose (GLU) vs. non-glucose beverage (NON-GLU) condition. METHODS: Ten healthy men volunteered and were counterbalanced either a GLU or NON-GLU containing beverage on separate mornings. In each condition, they were exposed to 37°C, 50% relative humidity (RH) for baseline, exercise, rehydration, and recovery periods. The exercise period elicited the desired level of dehydration (mean of 2.6 ± 0.3% body weight losses). Upon completion of the protracted exercise, participants were administered either a GLU or NON-GLU containing electrolyte based sports drink ad libitum for 30 min, followed by a recovery period of 15 min in 37°C, 50% RH. Rectal (Tre) and mean skin temperatures (Tsk) were continuously monitored. Gagge (TS) and heated thermal sensation (HTS), profile of mood state (POMS) were measure at the end of each period. RESULTS: During recovery after rehydration, Tre was not significantly different between conditions (GLU vs. NON-GLU) (37.4 ± 0.8 vs. 37.0 ± 1.2°C); Tsk was also not affected by rehydration in both conditions (36.0 ± 0.5 vs. 36.0 ± 0.6°C) and, TS and HTS did not differ between conditions (0.9 ± 1.3 vs.1.3 ± 0.7) and (1.0 ± 0.8 vs.0.8 ± 0.3). Total mood disturbance (TMD) score for the POMS was utilized for overall negative mood state and demonstrated a main effect for time (p < 0.05). TMD during recovery was decreased compared to before hydration in both conditions. CONCLUSION: The non-glucose containing beverage maintained plasma volume and was effective at maintaining body temperature homeostasis in a similar fashion compared to the glucose containing beverage. Furthermore, negative mood state was not different between the two conditions. The non-glucose beverages can serve a valuable role in the exercise environment depending upon the sport, the ambient temperature, the individual, duration of the exercise, the age and training states of the individual

    Physiologic Responses, Liking and Motivation for Playing the Same Video Game on an Active Versus a Traditional, Non-Active Gaming System.

    Get PDF
    Int J Exerc Sci 5(2) : 160-169, 2012. Evidence suggests that individuals playing certain video games on the Nintendo Wii® (Wii) exhibit increased energy expenditure versus traditional video games, although little research examines non-Wii Sports/Fit games. The purpose of this study is to assess physiologic responses, liking, and the relative reinforcing value (RRV) of a popular, non-Wii sports video game for the Wii relative to the same game played on a traditional, non-active system. Twenty-four college-aged students participated. Heart rate and oxygen consumption (O2) was assessed during rest and when playing the following games: Madden NFL 2011® for Playstation 2 (PS2 Madden) and the Wii (Wii Madden), and Wii Sports Boxing. The RRV was assessed for Wii Madden versus PS2 Madden. Analysis of variance demonstrated a main effect for condition (p ≤ 0.01) as O2 (5.2 ± 0.2 ml·kg-1·min-1 Wii, 4.1 ± 0.1 ml·kg-1·min-1 PS2, 3.7 ± 0.1 ml·kg-1·min-1, rest) and heart rate (89.2 ± 2.7 bpm Wii, 79.7 ± 2.5 bpm PS2, 79.1 ± 2.5 bpm, rest) was greater for Wii Madden than PS2 Madden and rest. Heart Rate (105.4 ± 5.3 bpm) and O2 (10.4 ml·kg-1·min-1) for Wii Sports Boxing was significantly greater than all other conditions (p ≤ 0.003). The RRV was not significantly different between Wii Madden and PS2 Madden (p = 0.50). Compared to the same game on a traditional system, Wii Madden is more physiologically challenging and equally reinforcing. However, Wii Madden would not be categorized as moderate-intensity physical activity
    • …
    corecore