36 research outputs found

    EELT-HIRES the high resolution spectrograph for the E-ELT: software and hardware solutions for its control

    Get PDF
    The current E-ELT instrumentation plan foresees a High Resolution Spectrograph conventionally indicated as EELTHIRES whose Phase A study has started in March 2016. Since 2013 however, a preliminary study of a modular E-ELT instrument able to provide high-resolution spectroscopy (R 100,000) in a wide wavelength range (0.37-2.5 μm) has been already conducted by an international consortium (termed "HIRES initiative"). Taking into account the requirements inferred from this preliminary work in terms of both high-level operations as well as low-level control, we will present in this paper possible solutions for HIRES hardware and software architecture. The validity of the proposed architectural and hardware choices will be eventually discussed based also on the experience gained on a real-working instrument, ESPRESSO, the next generation high-stability spectrograph for the VLT and to certain extent the precursor of HIRES. <P /

    Nightside condensation of iron in an ultra-hot giant exoplanet

    Get PDF
    Ultra-hot giant exoplanets receive thousands of times Earth's insolation. Their high-temperature atmospheres (>2,000 K) are ideal laboratories for studying extreme planetary climates and chemistry. Daysides are predicted to be cloud-free, dominated by atomic species and substantially hotter than nightsides. Atoms are expected to recombine into molecules over the nightside, resulting in different day-night chemistry. While metallic elements and a large temperature contrast have been observed, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ("evening") and night-to-day ("morning") terminators could, however, be revealed as an asymmetric absorption signature during transit. Here, we report the detection of an asymmetric atmospheric signature in the ultra-hot exoplanet WASP-76b. We spectrally and temporally resolve this signature thanks to the combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11+/-0.7 km s-1 on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. Iron must thus condense during its journey across the nightside.Comment: Published in Nature (Accepted on 24 January 2020.) 33 pages, 11 figures, 3 table

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p &lt; 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    T-REX OU4 HIRES: the high resolution spectrograph for the E-ELT

    Get PDF
    The goal of this unit was to consolidate the project for the construction of the high resolution spectrometer of the E-ELT (HIRES). The task included the development of scientific cases and tools to predict the instrumental performances. From the technical point of view it included several R&D activities in collaboration with highly specialized Italian companies; it culminated with the detailed design of a highly modular instrument based on well established technologies. From the management point of view it lead to the consolidation of a large international consortium that spans over 12 countries and includes most of the European and ESO-related institutes interested in high resolution spectroscopy. This consortium is led by INAF; its formal creation is awaiting the official call by ESO for the phase-A study for the HIRES instrument of the E-ELT

    CUBES : the Cassegrain U-band Efficient Spectrograph

    Get PDF
    In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (> 40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R >20, 000 (with a lower-resolution, sky-limited mode of R ~7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028

    ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study

    Get PDF
    We present the results from the phase A study of ELT-HIRES, an optical-infrared High Resolution Spectrograph for ELT, which has just been completed by a consortium of 30 institutes from 12 countries forming a team of about 200 scientists and engineers. The top science cases of ELT-HIRES will be the detection of life signatures from exoplanet atmospheres, tests on the stability of Nature's fundamental couplings, the direct detection of the cosmic acceleration. However, the science requirements of these science cases enable many other groundbreaking science cases. The baseline design, which allows to fulfil the top science cases, consists in a modular fiber- fed cross-dispersed echelle spectrograph with two ultra-stable spectral arms providing a simultaneous spectral range of 0.4-1.8 μm at a spectral resolution of 100,000. The fiber-feeding allows ELT-HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU

    ESPRESSO at VLT. On-sky performance and first results

    Get PDF
    Context. ESPRESSO is the new high-resolution spectrograph of ESO's Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16 m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims: We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods: ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results: The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65″ exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s-1 during a single night and 50 cm s-1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s-1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions: The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields. Based on GTOs collected at the European Southern Observatory under ESO program(s) 1102.C-0744, 1102.C-0958 and 1104.C-0350 by the ESPRESSO Consortium

    Pilonidal sinus surgery: Could we predict postoperative complications?

    No full text
    Pilonidal sinus surgery could, as of now, be considered a surgery tailored more to the surgeon than to the patient. In an attempt to give to surgeons an objective instrument of decision, we have evaluated which variables could be considered predictive of postoperative complications after pilonidal sinus surgery. A prospective electronic database of all patients treated for sacrococcygeal pilonidal disease was analysed. Sex, age, obesity, smoking, recurrent disease, the presence of multiple orifices and the distance between the most lateral orifice and midline were recorded and correlated with the occurrence of postoperative complications (infection and recurrence); 1006 patients were evaluated. Excision with primary mid-line closure was performed on all the patients. Mean follow-up was 7·3±3·6years. A total of 158 patients with postoperative complications (infection and/or recurrence) were recorded during this period. A multivariate analysis showed that, after adjusting for major clinical and demographic characteristics, only a recurrent disease [odds ratio (OR): 3·41, 95% confidence interval (CI): 1·89-6·15, P<0·001] and the distance of lateral orifice from midline (OR: 26·3, 95% CI: 12·2-56·7, P<0·001) were independent predictors of overall postoperative complications. Focussing on the distance from midline, the receiver operative characteristic (ROC) analysis showed that the distance of lateral orifice from midline predicted 79·2% of complications and the Youden's test identified the best cut-off as 2·0cm for this variable. An evidence-based tool for deciding on the type of surgical intervention could be developed and validated by further ad hoc prospective studies evaluating our results in comparison to other different types of surgical techniques. Our results support the use of these variables as an effective way to tailor pilonidal sinus surgery to the patient, so as to obtain the best results in patient care
    corecore