416 research outputs found
Penning ionization of doped helium nanodroplets following EUV excitation
Helium nanodroplets are widely used as a cold, weakly interacting matrix for
spectroscopy of embedded species. In this work we excite or ionize doped He
droplets using synchrotron radiation and study the effect onto the dopant atoms
depending on their location inside the droplets (rare gases) or outside at the
droplet surface (alkali metals). Using photoelectron-photoion coincidence
imaging spectroscopy at variable photon energies (20-25 eV), we compare the
rates of charge-transfer to Penning ionization of the dopants in the two cases.
The surprising finding is that alkali metals, in contrast to the rare gases,
are efficiently Penning ionized upon excitation of the (n=2)-bands of the host
droplets. This indicates rapid migration of the excitation to the droplet
surface, followed by relaxation, and eventually energy transfer to the alkali
dopants
EUV ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization and electron energy-loss spectra
The ionization dynamics of pure He nanodroplets irradiated by EUV radiation
is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence
(VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular
distributions measured in coincidence with the most abundant ions He+, He2+,
and He3+. Surprisingly, below the autoionization threshold of He droplets we
find indications for multiple excitation and subsequent ionization of the
droplets by a Penning-like process. At high photon energies we evidence
inelastic collisions of photoelectrons with the surrounding He atoms in the
droplets
Synchrotron radiation photoionization mass spectrometry of laser ablated species
The present paper describes an experimental apparatus suitable to create and study free clusters by combining laser ablation and synchrotron radiation. First tests on sulfur samples, S, showed the production, through laser ablation, of neutral Sn clusters (n = 1–8). These clusters were ionized using synchrotron radiation at photon energies from 160 eV to 175 eV, across the S 2p core edge. The feasibility of such combined ablation–synchrotron radiation experiments is demonstrated, opening new possibilities on the investigation of free clusters and radical
Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance e.g.~in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H∗) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing XUV femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states
Valence photoionization of the N2 molecule in the region of the N 1s→Rydberg excitations
The intensities of the X and A valence photoelectron lines of N2 have been found to display Fano line shapes as a function of photon energy around the N 1s→ Rydberg excitations. The vibrational intensity distributions of these photoelectron lines change at the N 1s→3sσ and 3pπ resonances. These effects indicate interference between direct and resonant photoionization channels. Our numerical simulations reproduce quite well the experimental results
On the production of N-2(+) ions at the N 1s edge of the nitrogen molecule
The N+2 ion yield of the N2 molecule has been measured at the N 1s → Rydberg excitations. It displays Fano-type line shapes due to interference between direct outer-valence photoionization and participator decay of the core-excited Rydberg states. The N+2 ion yield is compared with the total intensity of the outer-valence photoelectron lines obtained recently with electron spectroscopy (Kivimäki et al 2012 Phys. Rev. A 86 012516). The increasing difference between the two curves at the higher core-to-Rydberg excitations is most likely due to soft x-ray emission processes that are followed by autoionization. The results also suggest that resonant Auger decay from the core–valence doubly excited states contributes to the N+2 ion yield at the photon energies that are located on both sides of the N 1s ionization limit
VUV and X-ray coherent light with tunable polarization from single-pass free-electron lasers
Tunable polarization over a wide spectral range is a required feature of
light sources employed to investigate the properties of local symmetry in both
condensed and low-density matter. Among new-generation sources, free-electron
lasers possess a unique combination of very attractive features, as they allow
to generate powerful and coherent ultra-short optical pulses in the VUV and
X-ray spectral range. However, the question remains open about the possibility
to freely vary the light polarization of a free-electron laser, when the latter
is operated in the so-called nonlinear harmonic-generation regime. In such
configuration, one collects the harmonics of the free-electron laser
fundamental emission, gaining access to the shortest possible wavelengths the
device can generate. In this letter we provide the first experimental
characterization of the polarization of the harmonic light produced by a
free-electron laser and we demonstrate a method to obtain tunable polarization
in the VUV and X-ray spectral range. Experimental results are successfully
compared to those obtained using a theoretical model based on the paraxial
solution of Maxwell's equations. Our findings can be expected to have a deep
impact on the design and realization of experiments requiring full control of
light polarization to explore the symmetry properties of matter samples
Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique
Low-energy photoelectron–vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s−1 → 2p−1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO+ ions into O+ + N* or N+ + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission
- …
