14 research outputs found

    Expression of Progesterone Receptor Membrane Component 1 (PGRMC1), Progestin and AdipoQ Receptor 7 (PAQPR7), and Plasminogen Activator Inhibitor 1 RNA-Binding Protein (PAIRBP1) in Glioma Spheroids In Vitro

    No full text
    Objective. Some effects of progesterone on glioma cells can be explained through the slow, genomic mediated response via nuclear receptors; the other effects suggest potential role of a fast, nongenomic action mediated by membrane-associated progesterone receptors. Methods. The effects of progesterone treatment on the expression levels of progesterone receptor membrane component 1 (PGRMC1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1), and progestin and adipoQ receptor 7 (PAQR7) on both mRNA and protein levels were investigated in spheroids derived from human glioma cell lines U-87 MG and LN-229. Results. The only significant alteration at the transcript level was the decrease in PGRMC1 mRNA observed in LN-229 spheroids treated with 30 ng/mL of progesterone. No visible alterations at the protein levels were observed using immunohistochemical analysis. Stimulation of U-87 MG spheroids resulted in an increase of PGRMC1 but a decrease of PAIRBP1 protein. Double immunofluorescent detection of PGRMC1 and PAIRBP1 identified the two proteins to be partially colocalized in the cells. Western blot analysis revealed the expected bands for PGRMC1 and PAIRBP1, whereas two bands were detected for PAQR7. Conclusion. The progesterone action is supposed to be mediated via membrane-associated progesterone receptors as the nuclear progesterone receptor was absent in tested spheroids

    <sup>18</sup>FDG-PET-CT in the follow-up of non-small cell lung cancer patients after radical radiotherapy with or without chemotherapy:An economic evaluation

    No full text
    Background: The optimal follow-up strategy of non-small cell lung cancer (NSCLC) patients after curative intent therapy is still not established. In a recent prospective study with 100 patients, we showed that a FDG-PET-CT 3 months after radiotherapy (RT) could identify progression amenable for curative treatment in 2% (95% confidence interval (CI): 1-7%) of patients, who were all asymptomatic. Here, we report on the economic evaluation of this study. Patients and methods: A decision-analytic Markov model was developed in which the long-term cost-effectiveness of 3 follow-up strategies was modelled with different imaging methods 3 months after therapy: a PET-CT scan; a chest CT scan; and conventional follow-up with a chest X-ray. A probabilistic sensitivity analysis was performed to account for uncertainty. Because the results of the prospective study indicated that the advantage seems to be confined to asymptomatic patients, we additionally examined a strategy where a PET-CT was applied only in the subgroup of asymptomatic patients. Cost-effectiveness of the different follow-up strategies was expressed in incremental cost-effectiveness ratios (ICERs), calculating the incremental costs per quality adjusted life year (QALY) gained. Results: Both PET-CT- and CT-based follow-up were more costly but also more effective than conventional follow-up. CT-based follow-up was only slightly more effective than conventional follow-up, resulting in an incremental cost-effectiveness ratio (ICER) of € 264.033 per QALY gained. For PET-CT-based follow-up, the ICER was € 69.086 per QALY gained compared to conventional follow-up. The strategy in which a PET-CT was only performed in the asymptomatic subgroup resulted in an ICER of € 42.265 per QALY gained as opposed to conventional follow-up. With this strategy, given a ceiling ratio of € 80.000, PET-CT-based follow-up had the highest probability of being cost-effective (73%). Conclusions: This economic evaluation shows that a PET-CT scan 3 months after (chemo)radiotherapy with curative intent is a potentially cost-effective follow-up method, and is more cost-effective than CT alone. Applying a PET-CT scan only in asymptomatic patients is probably as effective and more cost-effective. It is worthwhile to perform additional research to reduce uncertainty regarding the decision concerning imaging in the follow-up of NSCLC.</p

    <sup>18</sup>FDG-PET-CT in the follow-up of non-small cell lung cancer patients after radical radiotherapy with or without chemotherapy:An economic evaluation

    No full text
    Background: The optimal follow-up strategy of non-small cell lung cancer (NSCLC) patients after curative intent therapy is still not established. In a recent prospective study with 100 patients, we showed that a FDG-PET-CT 3 months after radiotherapy (RT) could identify progression amenable for curative treatment in 2% (95% confidence interval (CI): 1-7%) of patients, who were all asymptomatic. Here, we report on the economic evaluation of this study. Patients and methods: A decision-analytic Markov model was developed in which the long-term cost-effectiveness of 3 follow-up strategies was modelled with different imaging methods 3 months after therapy: a PET-CT scan; a chest CT scan; and conventional follow-up with a chest X-ray. A probabilistic sensitivity analysis was performed to account for uncertainty. Because the results of the prospective study indicated that the advantage seems to be confined to asymptomatic patients, we additionally examined a strategy where a PET-CT was applied only in the subgroup of asymptomatic patients. Cost-effectiveness of the different follow-up strategies was expressed in incremental cost-effectiveness ratios (ICERs), calculating the incremental costs per quality adjusted life year (QALY) gained. Results: Both PET-CT- and CT-based follow-up were more costly but also more effective than conventional follow-up. CT-based follow-up was only slightly more effective than conventional follow-up, resulting in an incremental cost-effectiveness ratio (ICER) of € 264.033 per QALY gained. For PET-CT-based follow-up, the ICER was € 69.086 per QALY gained compared to conventional follow-up. The strategy in which a PET-CT was only performed in the asymptomatic subgroup resulted in an ICER of € 42.265 per QALY gained as opposed to conventional follow-up. With this strategy, given a ceiling ratio of € 80.000, PET-CT-based follow-up had the highest probability of being cost-effective (73%). Conclusions: This economic evaluation shows that a PET-CT scan 3 months after (chemo)radiotherapy with curative intent is a potentially cost-effective follow-up method, and is more cost-effective than CT alone. Applying a PET-CT scan only in asymptomatic patients is probably as effective and more cost-effective. It is worthwhile to perform additional research to reduce uncertainty regarding the decision concerning imaging in the follow-up of NSCLC.</p

    Selective nodal irradiation on basis of (18)FDG-PET scans in limited-disease small-cell lung cancer: a prospective study

    Get PDF
    PURPOSE: To evaluate the results of selective nodal irradiation on basis of (18)F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. METHODS AND MATERIALS: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. RESULTS: A difference was seen in the involved nodal stations between the pretreatment (18)F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. CONCLUSION: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC

    The DynaDeep observatory – a unique approach to study high-energy subterranean estuaries

    No full text
    Subterranean estuaries are connective zones between inland aquifers and the open sea where terrestrial freshwater and circulating seawater mix and undergo major biogeochemical changes. They are biogeochemical reactors that modify groundwater chemistry prior to discharge into the sea. We propose that subterranean estuaries of high-energy beaches are particularly dynamic environments, where the effect of the dynamic boundary conditions propagates tens of meters into the subsurface, leading to strong spatio-temporal variability of geochemical conditions. We hypothesize that they form a unique habitat with an adapted microbial community unlike other typically more stable subsurface environments. So far, however, studies concerning subterranean estuaries of high-energy beaches have been rare and therefore their functioning, and their importance for coastal ecosystems, as well as for carbon, nutrient and trace element cycling, is little understood. We are addressing this knowledge gap within the interdisciplinary research project DynaDeep by studying the combined effect of surface (hydro- and morphodynamics) on subsurface processes (groundwater flow and transport, biogeochemical reactions, microbiology). A unique subterranean estuary observatory was established on the northern beach of the island of Spiekeroog facing the North Sea, serving as an exemplary high-energy research site and model system. It consists of fixed and permanent infrastructure such as a pole with measuring devices, multi-level groundwater wells and an electrode chain. This forms the base for autonomous measurements, regular repeated sampling, interdisciplinary field campaigns and experimental work, all of which are integrated via mathematical modelling to understand and quantify the functioning of the biogeochemical reactor. First results show that the DynaDeep observatory is collecting the intended spatially and temporally resolved morphological, sedimentological and biogeochemical data. Samples and data are further processed ex-situ and combined with experiments and modelling. Ultimately, DynaDeep aims at elucidating the global relevance of these common but overlooked environments
    corecore