31 research outputs found

    Inadequate Content of Docosahexaenoic Acid (DHA) of Donor Human Milk for Feeding Preterm Infants: A Comparison with Mother's Own Milk at Different Stages of Lactation

    Get PDF
    A cross-sectional single-center study was designed to compare the fatty acids profile, particularly docosahexaenoic acid (DHA) levels, between milk banking samples of donor human milk and mother's own milk (MOM) for feeding preterm infants born before 32 weeks' gestation. MOM samples from 118 mothers included colostrum (1-7 days after delivery), transitional milk (9-14 days), and mature milk (15-28 days and ≥29 days). In the n-3 polyunsaturated fatty acids (PUFAs) group, the levels of α-linolenic acid (C18:3 n3) and DHA (C22:6 n3) showed opposite trends, whereas α-linolenic acid was higher in donor human milk as compared with MOM, with increasing levels as stages of lactation progressed, DHA levels were significantly lower in donor human milk than in MOM samples, which, in turn, showed decreasing levels along stages of lactation. DHA levels in donor human milk were 53% lower than in colostrum. Therefore, in preterm infants born before 32 weeks' gestation, the use of pasteurized donor human milk as exclusive feeding or combined with breastfeeding provides an inadequate supply of DHA. Nursing mothers should increase DHA intake through fish consumption or nutritional supplements with high-dose DHA while breastfeeding. Milk banking fortified with DHA would guarantee adequate DHA levels in donor human milk

    Erythrocyte Membrane Docosahexaenoic Acid (DHA) and Lipid Profile in Preterm Infants at Birth and Over the First Month of Life: A Comparative Study with Infants at Term

    Get PDF
    An observational comparative study was designed to assess the fatty acids profile in erythrocyte membrane phospholipids of 30 preterm neonates (<32 weeks gestation) at birth and after 1 month of life versus a convenience sample of 10 infants born at term. The panel of fatty acids included the families and components of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and n-6 and n-3 polyunsaturated fatty acids (PUFAs) as well as enzyme activity indexes and fatty acids ratios. At birth, the comparison of fatty acid families between preterm and term neonates showed a significantly higher content of SFAs and n-6 PUFAs, and a significantly lower content of MUFAs and n-3 PUFAs in the preterm group. After 30 days of life, significantly higher levels of n-6 PUFAs and significantly lower levels of n-3 PUFAs among preterm neonates persisted. At 30 days of birth, n-6 PUFA/n-3 PUFA and arachidonic acid (ARA) ARA/DHA remained significantly elevated, and DHA sufficiency index significantly decreased in the preterm group. The pattern of n-3 PUFA deficiency at birth and sustained for the first month of life would support the need of milk banking fortified with DHA and the use of DHA supplementation in breastfeeding mothers

    Synthesis and Characterization of a New Bivalent Ligand Combining Caffeine and Docosahexaenoic Acid

    Get PDF
    Caffeine is a promising drug for the management of neurodegenerative diseases such as Parkinson's disease (PD), demonstrating neuroprotective properties that have been attributed to its interaction with the basal ganglia adenosine A2A receptor (A2AR). However, the doses needed to exert these neuroprotective effects may be too high. Thus, it is important to design novel approaches that selectively deliver this natural compound to the desired target. Docosahexaenoic acid (DHA) is the major omega-3 fatty acid in the brain and can act as a specific carrier of caffeine. Furthermore, DHA displays properties that may lead to its use as a neuroprotective agent. In the present study, we constructed a novel bivalent ligand covalently linking caffeine and DHA and assessed its pharmacological activity and safety profile in a simple cellular model. Interestingly, the new bivalent ligand presented higher potency as an A2AR inverse agonist than caffeine alone. We also determined the range of concentrations inducing toxicity both in a heterologous system and in primary striatal cultures. The novel strategy presented here of attaching DHA to caffeine may enable increased effects of the drug at desired sites, which could be of interest for the treatment of PD

    Erythrocyte Omega-3 Fatty Acid Content in Elite Athletes in Response to Omega-3 Supplementation: A Dose-Response Pilot Study

    Get PDF
    Introduction. Supplementation of Omega-3 fatty acids (n-3FA) in athletes is related to the anti-inflammatory and/or antioxidant effect and consequently its action on all the processes of tissue restoration and adaptation to physical stress. Objective. Evaluate the Omega-3 Index (O3Ix) response, in red blood cells, to supplemental EPA + DHA intake in the form of high purity and stable composition gums (G), in elite summer athletes. Method. Twenty-four summer sport athletes of both sexes, pertaining to the Olympic Training Center in Spain, were randomized to two groups (2G = 760 or 3G = 1140 mg of n-3 FA in Omegafort OKids, Ferrer Intl.) for 4 months. Five athletes and four training staff volunteers were control group. Results. The O3Ix was lower than 8% in 93.1% of all the athletes. The supplementation worked in a dose-dependent manner: 144% for the 3G dose and 135% for the 2G, both p<0.001, with a 3% significant decrease of Omega-6 FAs. No changes were observed for the control group. Conclusions. Supplementation with n-3FA increases the content of EPA DHA in the red blood cells at 4 months in a dose-dependent manner. Athletes with lower basal O3Ix were more prone to increment their levels. The study is registered with Protocol Registration and Results System (ClinicalTrials.gov) number NCT02610270

    Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice

    Get PDF
    Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA) was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS) and Interferon-gamma (IFN-Îł). TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE), 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders

    Effect of Melatonin Plus Zinc Supplementation on Fatigue Perception in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    Síndrome de fatiga crònica; Melatonina; Encefalomielitis miàlgicaSíndrome de fatiga crónica; Melatonina; Encefalomielitis miálgicaChronic fatigue syndrome; Melatonin; Myalgic encephalomyelitisMyalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multisystem, and profoundly debilitating condition, probably of multifactorial etiology. No effective approved drugs are currently available for its treatment. Several studies have proposed symptomatic treatment with melatonin and zinc supplementation in chronic illnesses; however, little is known about the synergistic effect of this treatment on fatigue-related symptoms in ME/CFS. The primary endpoint of the study was to assess the effect of oral melatonin plus zinc supplementation on fatigue in ME/CFS. Secondary measures included participants’ sleep disturbances, anxiety/depression and health-related quality of life. A proof-of-concept, 16-week, randomized, placebo-controlled, double-blind trial was conducted in 50 ME/CFS patients assigned to receive either oral melatonin (1 mg) plus zinc (10 mg) supplementation (n = 24) or matching placebo (n = 26) once daily. Endpoint outcomes were evaluated at baseline, and then reassessed at 8 and 16 weeks of treatment and 4 weeks after treatment cessation, using self-reported outcome measures. The most relevant results were the significant reduction in the perception of physical fatigue in the Mel-Zinc group at the final treatment follow-up versus placebo (p < 0.05), and the significant improvement in the physical component summary at all follow-up visits in the experimental group. Urinary 6-sulfatoxymelatonin levels were significantly elevated though the treatment in experimental group vs. placebo (p < 0.0001); however, no significantly differences were observed for zinc concentration among participants. Our findings suggest that oral melatonin plus zinc supplementation for 16 weeks is safe and potentially effective in reducing fatigue and improving the quality of life in ME/CFS. This clinical study was registered on ClinicalTrials.gov (NCT03000777)J.C.-M. received financial support from the Laboratorios Viñas, S.A. (Barcelona, Spain). This study was supported by the Vall d’Hebron University Hospital (Barcelona, Spain). The Laboratorios Viñas, S.A. supplied both treatments (melatonin plus zinc supplement and placebo)

    Triglyceride form of docosahexaenoic acid mediates neuroprotection in experimental parkinsonism

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder of unknown etiology. The main treatment of PD consists of medication with dopamine-based drugs, which palliate the symptoms but may produce adverse effects after chronic administration. Accordingly, there is a need to develop novel neuroprotective therapies. Several studies suggest that omega-3 polyunsaturated fatty acids (n-3 PUFA) might provide protection against brain damage. Here, we studied several experimental models of PD, using striatal neuronal cultures, striatal slices, and mice, to assess the neuroprotective effects of docosahexaenoic acid (DHA), the main n-3 PUFA in the brain, administered in its triglyceride form (TG-DHA). Hence, we determined the beneficial effects of TG-DHA on neural viability following 6-hydroxydopamine (6-OHDA)-induced neurotoxicity, a well-established PD model. We also implemented a novel mouse behavioral test, the beam walking test, to finely assess mouse motor skills following dopaminergic denervation. This test showed potential as a useful behavioral tool to assess novel PD treatments. Our results indicated that TG-DHA-mediated neuroprotection was independent of the net incorporation of PUFA into the striatum, thus suggesting a tight control of brain lipid homeostasis both in normal and pathological conditions

    A Nutraceutical Rich in Docosahexaenoic Acid Improves Portal Hypertension in a Preclinical Model of Advanced Chronic Liver Disease

    Get PDF
    Inflammation and oxidative stress play a key role in the pathophysiology of advanced chronic liver disease (ACLD) and portal hypertension (PH). Considering the current lack of effective treatments, we evaluated an anti-inflammatory and antioxidant nutraceutical rich in docosahexaenoic acid (DHA) as a possible therapy for ACLD. We investigated the effects of two-week DHA supplementation (500 mg/kg) on hepatic fatty acids, PH, oxidative stress, inflammation, and hepatic stellate cell (HSC) phenotype in rats with ACLD. Additionally, the effects of DHA were evaluated in murine macrophages and human HSC. In contrast to vehicle-treated animals, cirrhotic rats receiving DHA reestablished a healthy hepatic fatty acid profile, which was associated with an improvement in PH. The mechanisms underlying this hemodynamic improvement included a reduction in oxidative stress and inflammation, as well as a marked HSC deactivation, confirmed in human HSC. Experiments with cultured macrophages showed that treatment with DHA protects against pro-inflammatory insults. The present preclinical study demonstrates that a nutraceutical rich in DHA significantly improves PH in chronic liver disease mainly by suppressing inflammation and oxidative stress-driven HSC activation, encouraging its evaluation as a new treatment for PH and cirrhosis

    Triglyceride Form of Docosahexaenoic Acid Mediates Neuroprotection in Experimental Parkinsonism

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder of unknown etiology. The main treatment of PD consists of medication with dopamine-based drugs, which palliate the symptoms but may produce adverse effects after chronic administration. Accordingly, there is a need to develop novel neuroprotective therapies. Several studies suggest that omega-3 polyunsaturated fatty acids (n-3 PUFA) might provide protection against brain damage. Here, we studied several experimental models of PD, using striatal neuronal cultures, striatal slices, and mice, to assess the neuroprotective effects of docosahexaenoic acid (DHA), the main n-3 PUFA in the brain, administered in its triglyceride form (TG-DHA). Hence, we determined the beneficial effects of TG-DHA on neural viability following 6-hydroxydopamine (6-OHDA)-induced neurotoxicity, a well-established PD model. We also implemented a novel mouse behavioral test, the beam walking test, to finely assess mouse motor skills following dopaminergic denervation. This test showed potential as a useful behavioral tool to assess novel PD treatments. Our results indicated that TG-DHA-mediated neuroprotection was independent of the net incorporation of PUFA into the striatum, thus suggesting a tight control of brain lipid homeostasis both in normal and pathological conditions

    Erythrocyte Membrane Docosahexaenoic Acid (DHA) and Lipid Profile in Preterm Infants at Birth and Over the First Month of Life : A Comparative Study with Infants at Term

    Get PDF
    An observational comparative study was designed to assess the fatty acids profile in erythrocyte membrane phospholipids of 30 preterm neonates (<32 weeks gestation) at birth and after 1 month of life versus a convenience sample of 10 infants born at term. The panel of fatty acids included the families and components of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and n-6 and n-3 polyunsaturated fatty acids (PUFAs) as well as enzyme activity indexes and fatty acids ratios. At birth, the comparison of fatty acid families between preterm and term neonates showed a significantly higher content of SFAs and n-6 PUFAs, and a significantly lower content of MUFAs and n-3 PUFAs in the preterm group. After 30 days of life, significantly higher levels of n-6 PUFAs and significantly lower levels of n-3 PUFAs among preterm neonates persisted. At 30 days of birth, n-6 PUFA/n-3 PUFA and arachidonic acid (ARA) ARA/DHA remained significantly elevated, and DHA sufficiency index significantly decreased in the preterm group. The pattern of n-3 PUFA deficiency at birth and sustained for the first month of life would support the need of milk banking fortified with DHA and the use of DHA supplementation in breastfeeding mothers
    corecore