1,778 research outputs found

    Development and fabrication of improved Schottky power diodes, phases I and II

    Get PDF
    Reproducible methods for the fabrication of silicon Schottky diodes were developed for the metals tungsten, aluminum, conventional platinum silicide and low temperature platinum silicide. Barrier heights and barrier lowering were measured permitting the accurate prediction of ideal forward and reverse diode performance. Processing procedures were developed which permit the fabrication of large area (approximately 1 sqcm) mesa-geometry power Schottky diodes with forward and reverse characteristics that approach theoretical values

    Development and fabrication of improved Schottky power diodes

    Get PDF
    Reproducible methods for the fabrication of silicon Schottky diodes have been developed for tungsten, aluminum, conventional platinum silicide, and low temperature platinum silicide. Barrier heights and barrier lowering under reverse bias have been measured, permitting the accurate prediction of forward and reverse diode characteristics. Processing procedures have been developed that permit the fabrication of large area (about 1 sq cm) mesageometry power Schottky diodes with forward and reverse characteristics that approach theoretical values. A theoretical analysis of the operation of bridge rectifier circuits has been performed, which indicates the ranges of frequency and voltage for which Schottky rectifiers are preferred to p-n junctions. Power Schottky rectifiers have been fabricated and tested for voltage ratings up to 140 volts

    Microarcsecond VLBI pulsar astrometry with PSRPI I. Two binary millisecond pulsars with white dwarf companions

    Full text link
    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars, and multiwavelength observations of their companion stars. Very Long Baseline Interferometry (VLBI) astrometry can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary millisecond pulsars, PSR J1022+1001 and J2145-0750, over a two-year period and measured their distances to be 700 +14 -10 pc and 613 +16 -14 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M ~ 0.85 Msun) white dwarf companions. Finally, we show that several measurements of their parallax and proper motion of PSR J1022+1001 and PSR J2145-0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5 sigma. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the timing model errors given the low ecliptic latitude of these two pulsars.Comment: 14 pages, 9 figures, 6 tables; minor revisions in response to referee comments to match version accepted by Ap

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+ξ2\sqrt{m^2 + \xi^2} and ξ2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Microarcsecond VLBI pulsar astrometry with PSRπ\pi II. parallax distances for 57 pulsars

    Full text link
    We present the results of PSRπ\pi, a large astrometric project targeting radio pulsars using the Very Long Baseline Array (VLBA). From our astrometric database of 60 pulsars, we have obtained parallax-based distance measurements for all but 3, with a parallax precision of typically 40 μ\muas and approaching 10 μ\muas in the best cases. Our full sample doubles the number of radio pulsars with a reliable (\gtrsim5σ\sigma) model-independent distance constraint. Importantly, many of the newly measured pulsars are well outside the solar neighbourhood, and so PSRπ\pi brings a near-tenfold increase in the number of pulsars with a reliable model-independent distance at d>2d>2 kpc. Using our sample along with previously published results, we show that even the most recent models of the Galactic electron density distribution model contain significant shortcomings, particularly at high Galactic latitudes. When comparing our results to pulsar timing, two of the four millisecond pulsars in our sample exhibit significant discrepancies in the estimates of proper motion obtained by at least one pulsar timing array. With additional VLBI observations to improve the absolute positional accuracy of our reference sources and an expansion of the number of millisecond pulsars, we will be able to extend the comparison of proper motion discrepancies to a larger sample of pulsar reference positions, which will provide a much more sensitive test of the applicability of the solar system ephemerides used for pulsar timing. Finally, we use our large sample to estimate the typical accuracy attainable for differential astrometry with the VLBA when observing pulsars, showing that for sufficiently bright targets observed 8 times over 18 months, a parallax uncertainty of 4 μ\muas per arcminute of separation between the pulsar and calibrator can be expected.Comment: updated to version accepted by ApJ: 30 pages, 20 figures, 9 table

    PSR J1856+0245: Arecibo Discovery of a Young, Energetic Pulsar Coincident with the TeV Gamma-ray Source HESS J1857+026

    Get PDF
    We present the discovery of the Vela-like radio pulsar J1856+0245 in the Arecibo PALFA survey. PSR J1856+0245 has a spin period of 81ms, a characteristic age of 21kyr, and a spin-down luminosity Edot = 4.6 x 10^36 ergs/s. It is positionally coincident with the TeV gamma-ray source HESS J1857+026, which has no other known counterparts. Young, energetic pulsars create wind nebulae, and more than a dozen pulsar wind nebulae have been associated with very-high-energy (100GeV-100TeV) gamma-ray sources discovered with the HESS telescope. The gamma-ray emission seen from HESS J1857+026 is potentially produced by a pulsar wind nebula powered by PSR J1856+0245; faint X-ray emission detected by ASCA at the pulsar's position supports this hypothesis. The inferred gamma-ray efficiency is epsilon_gamma = L_gamma/Edot = 3.1% (1-10TeV, for a distance of 9kpc), comparable to that observed in similar associations.Comment: 13 pages, 1 figure, accepted for publication in The Astrophysical Journal Letter

    Measurements of the Crab Pulsar's Giant Radio Pulse Amplitude Power-Law Index Using Low-Frequency Arecibo and Green Bank Telescope Observations

    Full text link
    We report two low-frequency measurements of the power-law index for the amplitudes of giant radio pulses from the Crab pulsar. The two observations were taken with the Arecibo and Green Bank radio telescopes at center frequencies of 327 MHz and 350 MHz, respectively. We find best-fit values for the differential power-law index β\beta (where dN/dSSβdN/dS \propto S^\beta and SS is pulse amplitude) of 2.63±0.05-2.63 \pm 0.05 and 3.6±0.5-3.6 \pm 0.5 from the Arecibo and Green Bank data sets, respectively. Both values are broadly consistent with other values previously measured for the Crab pulsar at low radio frequencies. These reported values may be useful in future giant pulse studies of the Crab pulsar.Comment: 7 pages with 1 table and 1 figure. Accepted by The Astrophysical Journa

    The structure of the exact effective action and the quark confinement in MSSM QCD

    Full text link
    An expression for the exact (nonperturbative) effective action of NN=1 supersymmetric gauge theories is proposed, supposing, that all particles except for the gauge bosons are massive. Analysis of its form shows, that instanton effects in the supersymmetric theories can lead to the quark confinement. The typical scale of confinement in MSSM QCD, calculated from the first principles, is in agreement with the experimental data. The proposed explanation is quite different from the dual Higgs mechanism.Comment: Final version to appear in Sov.J.Nucl.Phys. Some insignificant errors and misprints are correcte

    Competition of Spin-Fluctuations and Phonons in Superconductivity of ZrZn2

    Full text link
    It has been long suspected that spin fluctuations in the weak itinerant ferromagnet ZrZn2 may lead to a triplet superconductivity in this material. Here we point out another possibility, a spatially inhomogeneous singlet superconducting state (a Fulde-Ferrell-Larkin-Ovchinnikov state). We report detailed electronic structure calculations, as well as calculations of the zone center phonons and their coupling with electrons. We find that the exchange splitting is nonuniform and may allow for gap formation at some parts of the Fermi surface. We also find that there is substantial coupling of Zr rattling modes with electrons, which can, in principle, provide the necessary pairing in the s-channel.Comment: 4 pages, embedded color postscript figures. JPEG versions available from the author
    corecore