82 research outputs found

    The peppermint breath test benchmark for PTR-MS and SIFT-MS

    Get PDF
    18openInternationalInternational coauthor/editorA major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, the Peppermint Experiment involves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from the Peppermint Experiment performed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene, α- and ÎČ-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors.openHenderson, Ben; Slingers, Gitte; Pedrotti, Michele; Pugliese, Giovanni; MalĂĄskovĂĄ, Michaela; Bryant, Luke; Lomonaco, Tommaso; Ghimenti, Silvia; Moreno, Sergi; Cordell, Rebecca; Harren, Frans J M; Schubert, Jochen; Mayhew, Chris A; Wilde, Michael; Di Francesco, Fabio; Koppen, Gudrun; Beauchamp, Jonathan D; Cristescu, Simona MHenderson, B.; Slingers, G.; Pedrotti, M.; Pugliese, G.; MalĂĄskovĂĄ, M.; Bryant, L.; Lomonaco, T.; Ghimenti, S.; Moreno, S.; Cordell, R.; Harren, F.J.M.; Schubert, J.; Mayhew, C.A.; Wilde, M.; Di Francesco, F.; Koppen, G.; Beauchamp, J.D.; Cristescu, S.M

    Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot

    Get PDF
    We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TO

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) Δ4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE Δ2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity

    tRNATrp as primer for RNA-directed DNA polymerase: structural determinants of function.

    Get PDF
    The specific interactions between the RNA-directed DNA polymerase of avian oncornavirus and the tRNATrp primer required for initiation of viral DNA synthesis in vitro were examined. Two distinct interactions, stable binding of the tRNATrp to the enzyme and initiation of viral DNA synthesis by the enzyme with tRNATrp as primer, were characterized as to the structure of tRNATrp required. Different structural features of the tRNATrp were shown to be necessary for each type of interaction. The entire primary structure and native conformation of tRNATrp are both required for binding to reverse transcriptase. Fragments of tRNATrp and intact tRNATrp in an altered conformation cannot be bound by the enzyme using an assay which detects high affinity binding between reverse transcriptase and native tRNATrp. In contrast, fragments of the tRNATrp molecule can serve as primers for viral DNA synthesis with normal efficiency as compared to intact tRNATrp. The fragments which initiate transcription must contain a minimum specific nucleotide sequence which extends from the 3' terminus of the tRNATrp through 27 residues of the molecule. This portion of the tRNATrp may be a major structural determinant of specificity in initiation
    • 

    corecore