1,538 research outputs found
The Orbital Period of the Be/Neutron Star Binary RX J0812.4-3114
We present the results of Rossi X-ray Timing Explorer observations of the Be
star X-ray binary system RX J0812.4-3114. A light curve obtained with the RXTE
All-Sky Monitor shows that the source is currently in an active state with
outbursts occurring at approximately 80 day intervals. The source underwent a
transition from an inactive state to this regular outburst state early in 1998.
An observation of RX J0812.4-3114 was obtained with the RXTE Proportional
Counter Array close to the time of a predicted maximum in March 1999 and strong
pulsations were detected at a period of 31.88 seconds. This confirms the result
of an earlier PCA observation by Reig & Roche which was serendipitously also
obtained near the predicted maximum flux of the 80 day period and also near the
start of the current active state. We interpret the periodicity in the ASM
light curve as indicating the orbital period of RX J0812.4-3114 with outbursts
occurring around periastron passage
Looking for Stars and Finding the Moon: Effects of Lunar Gamma-ray Emission on Fermi LAT Light Curves
We are conducting a search for new gamma-ray binaries by making high
signal-to-noise light curves of all cataloged Fermi LAT sources and searching
for periodic variability using appropriately weighted power spectra. The light
curves are created using a variant of aperture photometry where photons are
weighted by the probability that they came from the source of interest. From
this analysis we find that the light curves of a number of sources near the
ecliptic plane are contaminated by gamma-ray emission from the Moon. This shows
itself as modulation on the Moon's sidereal period in the power spectra. We
demonstrate that this contamination can be removed by excluding times when the
Moon was too close to a source. We advocate that this data screening should
generally be used when analyzing LAT data from a source located close to the
path of the Moon.Comment: 2012 Fermi Symposium proceedings - eConf C12102
Swift/BAT and RXTE Observations of the Peculiar X-ray Binary 4U 2206+54 - Disappearance of the 9.6 Day Modulation
Observations of the high-mass X-ray binary 4U 2206+54 with the Swift Burst
Alert Telescope (BAT) do not show modulation at the previously reported period
of 9.6 days found from observations made with the Rossi X-ray Timing Explorer
(RXTE) All-Sky Monitor (ASM). Instead, the strongest peak in the power spectrum
of the BAT light curve occurs at a period of 19.25 +/- 0.08 days, twice the
period found with the RXTE ASM. The maximum of the folded BAT light curve is
also delayed compared to the maximum of the folded ASM light curve. The most
recent ASM data folded on twice the 9.6 day period show similar morphology to
the folded BAT light curve. This suggests that the apparent period doubling is
a recent secular change rather than an energy-dependent effect. The 9.6 day
period is thus not a permanent strong feature of the light curve. We suggest
that the orbital period of 4U 2206+54 may be twice the previously proposed
value.Comment: Accepted for publication in The Astrophysical Journa
Discovery of a new Transient X-ray Pulsar in the Small Magellanic Cloud
Rossi X-Ray Timing Explorer observations of the Small Magellanic Cloud have
revealed a previously unknown transient X-ray pulsar with a pulse period of
95s. Provisionally designated XTE SMC95, the pulsar was detected in three
Proportional Counter Array observations during an outburst spanning 4 weeks in
March/April 1999. The pulse profile is double peaked reaching a pulse fraction
\~0.8. The source is proposed as a Be/neutron star system on the basis of its
pulsations, transient nature and characteristically hard X-ray spectrum. The
2-10 keV X-ray luminosity implied by our observations is > 2x10^37 erg/s which
is consistent with that of normal outbursts seen in Galactic systems. This
discovery adds to the emerging picture of the SMC as containing an extremely
dense population of transient high mass X-ray binaries.Comment: Accepted by A&A. 7 pages, 6 figure
INTEGRAL and Swift observations of IGRJ19294+1816 in outburst
IGRJ19294+1816 was discovered by INTEGRAL in 2009 during a bright X-ray
outburst and was classified as a possible Be X-ray binary or supergiant fast
X-ray transient. On 2010 October 28, the source displayed a second X-ray
outburst and a 2 months-long monitoring with Swift was carried out to follow
the evolution of the source X-ray flux during the event. We report on the
INTEGRAL and Swift observations of the second X-ray outburst observed from
IGRJ19294+1816. We detected pulsations in the X-ray emission from the source at
\sim12.5 s up to 50 keV. The source X-ray flux decreased smoothly during the
two months of observation displaying only marginal spectral changes. Due to the
relatively rapid decay of the source X-ray flux, no significant variations of
the source spin period across the event could be measured. This prevented a
firm confirmation of the previously suggested orbital period of the source at
117 d. This periodicity was also searched by using archival Swift /BAT data. We
detected a marginally significant peak in the periodogram and determined the
best period at 116.2\pm0.6 days (estimated chance probability of a spurious
detection 1%). The smooth decline of the source X-ray flux across the two
months of observations after the onset of the second outburst, together with
its relatively low value of the spin period and the absence of remarkable
changes in the spectral parameters (i.e., the absorption column density),
suggests that IGRJ19294+1816 is most likely another member of the Be X-ray
binaries discovered by INTEGRAL and not a supergiant fast X-ray transient.Comment: Accepted for publication in A&A. 7 pages, 10 figure
X-ray Pulsars in the Small Magellanic Cloud
XMM-Newton archival data for the Small Magellanic Cloud have been examined
for the presence of previously undetected X-ray pulsars. One such pulsar, with
a period of 202 s, is detected. Its position is consistent with an early B star
in the SMC and we identify it as a high mass X-ray binary (HMXB). In the course
of this study we determined the pulse period of the possible AXP CXOU
J010043.1-721134 to be 8.0 s, correcting an earlier report (Lamb et al 2002b)
of a 5.4 s period for this object. Pulse profiles and spectra for each of these
objects are presented as well as for a recently discovered (Haberl & Pietsch
2004) 263 s X-ray pulsar. Properties of an ensemble of 24 optically identified
HMXB pulsars from the SMC are investigated. The locations of the pulsars and an
additional 22 X-ray pulsars not yet identified as having high mass companions
are located predominately in the young (ages years) star
forming regions of the SMC as expected on the basis of binary evolution models.
We find no significant difference between the distribution of spin periods for
the HMXB pulsars of the SMC compared with that of the Milky Way. For those HMXB
pulsars which have Be companions we note an inverse correlation between spin
period and maximum X-ray flux density. (This anti-correlation has been
previously noted for all X-ray binary pulsars by Stella, White & Rosner 1986).
The anti-correlation for the Be binaries may be a reflection of the fact that
the spin periods and orbital periods of Be HMXBs are correlated. We note a
similar correlation between X-ray luminosity and spin period for the Be HMXB
pulsars of the Milky Way and speculate that exploitation of the correlation
could serve as a distance indicator.Comment: final version accepted in The Astrophysical Journa
Monitoring and Discovering X-ray Pulsars in the Small Magellanic Cloud
Regular monitoring of the SMC with RXTE has revealed a huge number of X-ray
pulsars. Together with discoveries from other satellites at least 45 SMC
pulsars are now known. One of these sources, a pulsar with a period of
approximately 7.8 seconds, was first detected in early 2002 and since discovery
it has been found to be in outburst nine times. The outburst pattern clearly
shows a period of 45.1 +/- 0.4 d which is thought to be the orbital period of
this system. Candidate outburst periods have also been obtained for nine other
pulsars and continued monitoring will enable us to confirm these. This large
number of pulsars, all located at approximately the same distance, enables a
wealth of comparative studies. In addition, the large number of pulsars found
(which vastly exceeds the number expected simply by scaling the relative mass
of the SMC and the Galaxy) reveals the recent star formation history of the SMC
which has been influenced by encounters with both the LMC and the Galaxy.Comment: 5 pages, 4 figures, AIP conference proceedings format. Contribution
to "X-ray Timing 2003: Rossi and Beyond." meeting held in Cambridge, MA,
November, 200
Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud
We report on the long-term average spin period, rate of change of spin period
and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the
Small Magellanic Cloud. We also collect and calculate parameters of each system
and use these data to determine that all systems contain a neutron star which
is accreting via a disc, rather than a wind, and that if these neutron stars
are near spin equilibrium, then over half of them, including all with spin
periods over about 100 s, have magnetic fields over the quantum critical level
of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then
their magnetic fields are inferred to be much lower, of the order of 10^6-10^10
G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both
results are unexpected and have implications for the rate of magnetic field
decay and the isolated neutron star population.Comment: 22 pages, 50 figures; to appear in MNRA
The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504
A probable binary period has been detected in the optical counterpart to the
X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504
in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul
2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is
coincident with an Optical Gravitational Lensing (OGLE) object in the
lightcurves of which several optical outburst peaks are visible at ~ 268 day
intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99%
significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s
pulse-period has revealed detections which correspond closely with predicted or
actual peaks in the optical data. The relationship between this orbital period
and the pulse period of 504s is within the normal variance found in the Corbet
diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure
- …